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Abstract

This paper investigates optimal capital taxation in an innovation-driven growth

model. We examine how the optimal capital tax rate varies with externalities associated

with R&D and innovation. Our results show that the optimal capital tax rate is higher

when (i) the “stepping on toes effect”is smaller, (ii) the “standing on shoulders effect“

is stronger, or (iii) the extent of creative destruction is greater. Moreover, the optimal

capital tax rate and the monopolistic markup exhibit an inverted-U relationship. By

calibrating our model to the US economy, we find that the optimal capital tax rate is

positive, at a rate of around 11.9 percent. We also find that a positive optimal capital

tax rate is more likely to be the case when there is underinvestment in R&D.
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1 Introduction

Capital income is taxed worldwide. The estimated effective average tax rates on capital

income are around 40% in the United States and 30% in EU countries. In some countries,

such as the United Kingdom and Japan, the capital income tax rates are even up to nearly

60%. From the perspective of welfare maximization, whether these capital tax rates are too

high or too low is an important policy question.

Despite the fact that capital taxes are commonly levied in the real world, a striking theory

put forth by Judd (1985) and Chamley (1986) suggests that the government should only tax

labor income and leave capital income untaxed in the long run. A number of subsequent

studies, including Chari et al. (1994), Jones et al. (1997), Atkeson et al. (1999), and Chari

and Kehoe (1999), relax key assumptions in Judd (1985) and Chamley (1986), and find their

result to be quite robust. The idea of a zero optimal capital tax has then been dubbed the

Chamley-Judd result, which turns out to be one of the most well-established and important

results in the optimal taxation literature.

In this paper, we revisit the Chamley-Judd result in an innovation-driven growth model.

There are several reasons as to why we choose this environment to study optimal taxation.

First, as stressed by Aghion et al. (2013), it appears that the consideration of growth does

not play much of a role in the debate on the Chamley-Judd result. However, given that the

recent empirical evidence suggests that the tax structure has a significant impact on economic

growth (e.g., Arnold et al., 2011), it is more plausible to bring the role of growth into the

picture. Second, along the line of the optimal taxation literature, production technology

is treated as exogenously given. The role of endogenous technological change driven by

R&D has thus been neglected in previous models. In view of the fact that innovation is

a crucial factor in economic development as well as in the improvement of human well-

being, overlooking this element could lead to a suboptimal design of tax policies. Our study

thus aims to fill this gap. Third, as pointed out by Domeij (2005), a key premise in early

contributions supporting the Chamley-Judd result is that there exist no inherent distortions

and externalities in the economy. If market failures are present, the optimal capital income

tax might be different from zero. Thus, we introduce an innovation market that featues

various R&D externalities put forth by Jones and Williams (2000). Within this framework,

we can study how the optimal capital taxation and R&D externalities interact in ways not

so far understood.

By calibrating the model to the US economy, our numerical analysis shows that the opti-

1



mal capital income tax rate is around 12 percent. The reason for a positive optimal capital

income tax in our R&D-based growth model can be briefly explained as follows. In essence,

the Chamley-Judd result involves a tax shift between capital income tax and labor income

tax. The basic rationale behind a zero optimal capital tax is that taxing capital generates

more distortion than taxing labor, because taxing capital creates a dynamic ineffi ciency for

capital accumulation. In our R&D-based growth model, by contrast, innovation requires

R&D labor, as typically specified in standard R&D-based growth models (e.g., Romer, 1990;

Jones, 1995; Acemoglu, 1998).1 Under such a framework, taxing labor has a detrimental

effect on the incentives for innovation and growth. This introduces a justification for taxing

capital income instead of labor income. On these grounds, it might be optimal to have a

non-zero capital income tax rate.

Although the result of a positive capital income tax rate is not new in the literature, our

study provides insights by examining with what features of the innovation process would the

optimal capital tax rate be positive. By varying the parameters capturing important R&D

externalities to see how the optimal capital income tax responds, our analysis reveals the

following findings. First, under the benchmark parameters, the optimal capital tax rate is

positive, but this result can be sensitive to the parameter that determines the monopolistic

markup. Second, when knowledge spillovers are large or R&D duplication externalities are

small (thereby increasing the chances of underinvestment in R&D), it is more likely that

a positive optimal capital income tax rate will result. Third, when creative destruction is

more important in the R&D process, the optimal capital income tax rate should be higher

(lower) if the monopolistic markup is constrained (unconstrained) by the degree of creative

destruction. Fourth, a higher government spending ratio pushes toward a positive optimal

capital income tax.

Another contribution of this paper is that we identify the role of the monopolistic markup

played in determining optimal capital taxation. Our numerical analysis shows that the op-

timal capital income tax and the markup display an inverted-U shaped relationship. In

existing studies, a well-known result is that when the intermediate firms are imperfectly

competitive, capital investment is too low compared to the socially optimal level (e.g., Aiya-

1There are two specifications regarding the innovation process in typical R&D-based growth models: the
knowledge-driven specification (i.e., R&D using labor/scientists as inputs) and the lab-equipment specifi-
cation (i.e., R&D using final goods as inputs). Our analysis adopts the former approach by following the
viewpoint of Romer (1990) and Jones (1995) and also the empirical viewpoint of Einiö (2014) who points out
that R&D is a labor-intensive activity. If we instead adopt the lab-equipment specification, the numerical
values of the optimal capital tax rate would be different. However, the nature of the relationships between
R&D externalities and the optimal capital tax, which is our central goal in this paper, will not change.
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gari, 1995; Judd, 1997, 2002; Coto-Martínez et al., 2007). Accordingly, the government

should subsidize capital income to induce a higher level of capital investment, implying that

the optimal capital income tax tends to decrease when the monopolistic markup increases.

In addition to capturing this traditional effect, our present R&D-based growth model also

discloses another effect. In our model, the markup is inversely determined by the elasticity

of substitution between intermediate goods. A reduction in the substitution elasticity that

raises the markup amplifies the productivity of differentiated varieties in the production of

final goods and hence increases the social value of R&D. As a result of this, the government

is inclined to subsidize labor by taxing capital given that the R&D sector uses labor. In

consideration of this R&D effect, an increase in the monopolistic markup is not necessarily

accompanied by a lower optimal capital income tax.

Our study is related to a vast literature that attempts to overturn the Chamley-Judd

result and obtain a positive optimal capital income tax (e.g., among others, Chamley, 2001;

Erosa and Gervais, 2002; Domeij, 2005; Golosov et al., 2006; Conesa et al., 2009; Aghion et

al., 2013; Chen and Lu, 2013; Piketty and Saez, 2013; Straub andWerning, 2018). This paper

contributes to the literature by introducing the role of endogenous technological change. Two

papers studying the optimal factor tax within the framework of an endogenous growth model

are closely related to the present paper.2 The first paper is Chen and Lu (2013), who consider
a human capital-based endogenous growth model developed by Lucas (1988), and find that a

switch from labor income taxes to capital income taxes always enhances growth and welfare.

Thus, the government should tax capital income to a maximum level of 99%.

The second paper is Aghion et al. (2013), who also introduce R&D-based growth into the

debate of the Chamley-Judd result. Our paper differs from theirs in the following important

ways. Aghion et al. (2013) consider a Schumpeterian quality-ladder growth model, whereas

we adopt an expanding-variety R&D model (a la Romer, 1990) modified by Jones and

Williams (2000). There are two attractive features of this model choice. First, this model

is free of the “scale effect”which is often not observed in reality (Jones, 1995).3 Second,

2 As in Conesa et al. (2009), Aghion et al. (2013) and Chen and Lu (2013), our analysis puts aside
the role of government debt when examining the optimal factor taxes. That is, we mainly focus on the
trade-off between the capital and labor income tax. Another related paper is Zeng and Zhang (2002) who
also introduce factor taxes into an innovation-driven growth model. Their study, however, focuses on the
long-run growth effects of various taxes, instead of focusing on the normative analysis of the optimal capital
taxation.

3The earlier R&D-based growth models (Romer, 1990; Grossman and Helpman, 1991; Aghion and Howitt,
1992) have a feature that changes in the size of an economy’s population affect the long-run growth rate.
Jones (1995) argues that such “scale effect”is not supported by empirical evidence.
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the model in Jones and Williams (2000) features R&D externalities in various dimensions,

which fits our goal to examine the relation between the optimal capital income tax and the

innovation process. Moreover, in Aghion et al. (2013), a positive optimal capital income

tax arises only when the government spending to output ratio exceeds about 38%, which

is much larger than the empirical value. In our analysis, by contrast, the optimal capital

income tax is positive even if the government spending ratio is quite small (around 14%,

which is empirically more realistic).

The rest of the paper proceeds as follows. In Section 2 we describe the R&D-based growth

model featuring creative destruction and various types of R&D externalities elucidated by

Jones and Williams (2000). In Section 3 we analyze how capital tax changes affect the

economy in the long run. In Section 4 we quantify the optimal capital income tax rate and

examine how its value depends on various R&D externalities. Section 5 concludes.

2 The model

Our framework builds on the scale-invariant R&D-based growth model in Jones andWilliams

(2000). The main novelty of the Jones-Williams model is that it introduces a variety of

R&D externalities into the original variety-expanding R&D-based growth model in Romer

(1990). In this paper, we extend their model by incorporating (i) an elastic labor supply

and (ii) factor income taxes, namely, capital and labor income taxes. To conserve space, the

familiar components of the Romer variety-expanding model will be briefly described, while

new features will be described in more detail.

2.1 Households

We consider a continuous-time economy that is inhabited by a representative household. At

time t, the population size of the household is Nt, which grows at an exogenous rate n. Each

member of the household is endowed with one unit of time that can be used to supply labor

to a competitive market or enjoy leisure. The lifetime utility function of the representative

household is given as:4

U =

∫ ∞
0

e−βt [ln ct + χ ln(1− lt)] dt, β > 0, χ ≥ 0, (1)

4Here we assume that household welfare depends on per capita utility. See, e.g., Chu and Cozzi (2014)
for a similar specification.
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where ct is per capita consumption and lt is the supply of labor per capita. The parameters

β and χ denote, respectively, the subjective rate of time preference and leisure preference.

The representative household maximizes (1) subject to the following budget constraint:

k̇t + ėt = [(1− τK)rK,t − n− δ]kt + (re,t − n) et + (1− τL,t)wtlt − ct, (2)

where a dot hereafter denotes the derivative with respect to time, kt is physical capital per

capita, δ is the physical capital depreciation rate, et is the value of equity shares of R&D

owned by each member, rK,t is the capital rental rate, re,t is the rate of dividend, and wt
is the wage rate. The policy parameters τK and τL,t are respectively the capital and labor

income tax rate.5

Solving the dynamic optimization problem yields the following first-order conditions:

1

ct
= qt, (3)

(1− τL,t)wt(1− lt) = χct, (4)

re,t = (1− τK)rK,t − δ. (5)

where qt is the Hamiltonian co-state variable on eq. (2). Equations (3) and (4) are re-

spectively the optimality conditions for consumption and labor supply, and eq. (5) is a

no-arbitrage condition which states that the net returns on physical capital and equity

shares must be equalized. We denote the common net return on both assets as rt (i.e.,

rt = re,t = (1− τK)rK,t − δ). The typical Keynes-Ramsey rule is:

ċt
ct

= rt − n− β. (6)

2.2 The final-goods sector

A perfectly-competitive final-good sector produces a single final output Yt (treated as the

numéraire) by using labor and a continuum of intermediate capital goods, according to the

5We drop the subscript t for τK because it is treated as an exogenous policy parameter throughout the
paper.
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CES technology:

Yt = L1−α
Y,t

(
At∑
i=1

xαρt (i)

) 1
ρ

, 1 > α > 0, 1/α > ρ > 0, (7)

where LY,t is the labor input employed in final goods production, xt(i) is the i-th intermediate

capital good, and At is the number of varieties of the intermediate goods.

Profit maximization yields the following conditional demand functions for the labor input

and intermediate goods:

wt = (1− α)
Yt
LY,t

, (8)

pt(i) = αL1−α
Y,t

(
At∑
i=1

xαρt (i)

) 1
ρ
−1

xαρ−1
t (i), (9)

where pt(i) is the price of the i-th intermediate good.

2.3 The intermediate-goods sector

Each intermediate good is produced by a monopolistic producer that owns a perpetually

protected patent for that good. The producer uses one unit of physical capital to produce

one unit of intermediate goods; that is, the production function is xt(i) = vt(i), where vt(i)

denotes the capital input employed by monopolistic intermediate firm i. Accordingly, the

profit of intermediate goods firm i is:

πx,t(i) = pt(i)xt(i)− rK,tvt(i). (10)

Let ηt(i) denote the gross markup that the i-th intermediate firm can charge over its

marginal cost; that is:

pt(i) = ηt(i)rK,t. (11)

Then, the profit of the i-th intermediate firm can be obtained as:

πx,t(i) =
ηt(i)− 1

ηt(i)
α
Yt
At
. (12)

In subsection 2.5, we will elucidate how ηt(i) is determined.
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2.4 The R&D sector

R&D creates new varieties of intermediate goods for final-good production. In line with

Romer (1990) and Jones (1995), we assume that new varieties are developed using the labor

input (i.e., R&D scientists and engineers). The production technology is given as:

(1 + ψ)Ȧt = ς̃ tLA,t, ψ ≥ 0, (13)

where LA,t is the labor input used in the R&D sector, and ς̃ t is the productivity of R&D

which the innovators take as given. The parameter ψ represents the size of the innovation

clusters.6

We follow Jones (1995) to specify that the productivity of R&D takes the following

functional form:

ς̃ t = ςLλ−1
A,t A

φ
t , ς > 0, 1 ≥ λ > 0, 1 > φ > 0, (14)

where ς is a constant productivity parameter. In addition to ς, eqs. (13) and (14) contain

three parameters λ, φ and ψ. These parameters capture salient features of the R&D process,

as proposed by Jones and Williams (1998).

First, the parameter 1 ≥ λ > 0 reflects a (negative) duplication externality or a congestion

effect of R&D. It implies that the social marginal product of research labor can be less than

the private marginal product. This may happen because of, for example, a patent race, or

if two researchers accidentally work out a similar idea. Jones and Williams (1998) refer to

this negative duplication externality as the stepping on toes effect. Notice that this effect is

stronger with a smaller λ, and it vanishes when λ = 1.

Second, the parameter 1 > φ > 0 reflects a (positive) knowledge spillover effect due to

the fact that richer existing ideas are helpful to the development of new ideas. A higher φ

means that the spillover effect is greater. In his pioneering article, Romer (1990) specifies

φ = 1; however, Jones (1995) argues that φ = 1 exhibits a scale effect which is inconsistent

with the empirical evidence. We follow Jones (1995) and assume that φ < 1 in order to

remove this scale effect. The knowledge spillover effect is dubbed by Jones and Williams

(1998) as the standing on shoulders effect.

Finally, the parameter ψ ≥ 0 denotes the size of the innovation clusters, which captures

the concept of creative destruction formalized in the Schumpeterian growth model developed

by Aghion and Howitt (1992). The basic idea is that innovations must come together in

6In the later analysis, we will provide a more detailed explanation for this parameter.
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clusters, some of which are new, while others simply build on old fashions. More specifically,

suppose that an innovation cluster, which contains (1 +ψ) varieties, has been invented. Out

of these (1+ψ) varieties, only one unit of variety is entirely new and thus increases the mass

of the variety of intermediate goods. The remaining portion, of size ψ, simply replaces the

old versions. This portion captures the spirit of creative destruction since new versions are

created with the elimination of old versions. However this part does not contribute to an

increase in existing varieties. In other words, for (1 + ψ) intermediate goods invented, the

actual augmented variety is 1, while there are ψ repackaged varieties.

Given ς̃ t, the R&D sector hires LA,t to create (1 +ψ) varieties. Thus, the profit function

is πA,t = PA,t(1 + ψ)Ȧt −wtLA,t. By assuming free entry in the R&D sector, we can obtain:

PA,t =
st

1− st
(1− α)Yt

(1 + ψ)Ȧt
, (15)

where st ≡ LA,t/Lt is the ratio of research labor to total labor supply Lt. Moreover, the

no-arbitrage condition for the value of a variety is:

rtPA,t = πx,t + ṖA,t − ψ
Ȧt
At
PA,t. (16)

In the absence of creative destruction (ψ = 0), the familiar no-arbitrage condition reports

that, for each variety, the return on the equity shares rtPA,t will be equal to the sum of

the flow of the monopolistic profit πx,t plus the capital gain or loss ṖA,t. When creative

destruction is present, existing goods are replaced. Accompanied by Ȧt new varieties being

invented, the amount of ψȦt existing varieties will be replaced. Therefore, for each variety,

the expected probability of being replaced is ψȦt/At, which gives rise to the expected capital

loss expressed by the last term in eq. (16).

2.5 The monopolistic markup

This subsection explains how the monopolistic markup ηt(i) is determined. As identified by

Jones and Williams (2000), there are two scenarios in which the markup is decided. The

first is the “unconstrained”case. In this case, the monopolistic intermediate firm freely sets

the price by maximizing eq. (10) subject to the production function xt(i) = vt(i) and eq.

(9), which yields the pricing rule pt(i) = 1
ρα
rK,t. We refer to 1

ρα
as the “unconstrained”

markup. The second case is the “constrained”case, which may occur if the new designs are
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linked together in the innovation cluster. Specifically, a larger size of innovation clusters ψ

serves as a constraint that controls the magnitude of the monopolistic markup. The intuition

underlying this idea requires a more detailed explanation. Consider that the current number

of varieties is At. Now an innovation cluster with size (1+ψ) is developed. This increases the

mass of varieties to At+1; at the same time it also replaces old-version varieties by ψ units.

Subsequently, the final-good firm faces two choices. It can either adopt the new innovation

cluster and then use At+1 intermediate goods priced at a markup, or part with the new

innovation cluster and still use At intermediate goods in the production process. If the final-

good firm chooses the latter, since ψ varieties have now been displaced, the final-good firm

only needs to purchase At−ψ units of intermediate goods at a markup price, while the other
ψ units of displaced intermediate goods can be purchased at a lower (competitive) price.

When the size of an innovation cluster is high (a large value of ψ), the final-good firm will

not tend to adopt the new innovation cluster because sticking to old clusters is cheaper. As

a result, the intermediate-good firms have to set a lower price so as to attract the final-good

firm to adopt the new innovation cluster. This adoption constraint explains why an increase

in the size of the innovation clusters reduces the markup.

In an appendix, Jones and Williams (2000) demonstrate that the constrained markup

is negatively related to both the size of the innovation clusters and the elasticity of substi-

tution between capital goods. Specifically, they demonstrate that, in order to attract the

final-good firm to adopt the new innovation cluster, the intermediate-good firms cannot set

a markup that is higher than [(1 +ψ)/ψ]1/ρα−1. A profit-maximizing firm thus always tends

to set the highest price pt(i) = [(1 + ψ)/ψ]1/ρα−1rK,t. We refer to [(1 + ψ)/ψ]1/ρα−1 as the

"unconstrained" markup. By combining the constrained markup pricing with the uncon-

strained markup pricing rule mentioned earlier (i.e., pt(i) = 1
ρα
rK,t), we can conclude that

the equilibrium markup is:

ηt(i) = min

{
1

ρα
,

(
1 + ψ

ψ

) 1
ρα
−1
}
, (17)

which is independent of i and t. Combining eqs. (10) and (17) implies that all intermediate-

good firms are symmetric. Hence, the notation i can be dropped from now on.
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2.6 The government and aggregation

The government collects capital income taxes and labor income taxes to finance its public

spending. The balanced budget constraint faced by the government is:

Nt(τKrK,tkt + τL,twtlt) = Gt, (18)

where Gt is the total government spending. We assume that government spending is a

fixed proportion of final output, i.e., Gt = ζYt, where ζ ∈ (0, 1) is the ratio of government

spending to output. Now let us define the aggregate capital stock as Kt = Ntkt, aggregate

consumption Ct = Ntct, and total labor supply Lt = Ntlt. After some derivations, we can

obtain the following resource constraint in the economy: K̇t = Yt − Ct −Gt − δKt.

2.7 The decentralized equilibrium

The decentralized equilibrium in this economy is an infinite sequence of allocations {Ct, Kt,

At, Yt, Lt, LY,t, LA,t, xt, vt}∞t=0, prices {w t, rK,t, rt, pt, PA,t}
∞
t=0, and policies {τK , τL,t}, such

that at each instant of time:

a. households choose {ct, kt, et, lt} to maximize lifetime utility, eq. (1), taking prices and
policies as given;

b. competitive final-good firms choose {xt, LY,t} to maximize profit taking prices as given;

c. monopolistic intermediate firms i ∈ [0, At] choose {vt, pt} to maximize profit taking
rK,t as given;

d. the R&D sector chooses LA,t to maximize profit taking {PA,t, wt} and the productivity
ς̃ t as given;

e. the labor market clears, i.e., Ntlt = LA,t + LY,t;

f. the capital market clears, i.e., Ntkt = Atvt;

g. the stock market for variety clears, i.e., Ntet = PA,tAt

h. the resource constraint is satisfied, i.e., K̇t = Yt − Ct −Gt − δKt;

i. the government budget constraint is balanced, i.e., Nt(τKrK,tkt + τL,twtlt) = Gt.
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3 Balanced growth path

In this section, we explore the balanced growth path along which each variable grows at a

constant rate, which can be zero. We denote the growth rate of any generic variable Z by

gZ , and drop the time subscript to denote any variable in a steady state. The steady-state

growth rates of varieties and output are given by (see Appendix A):

gA =
λ

1− φn, gY =
1

1− α

(
1

ρ
− α

)
gA + n. (19a)

Moreover, in order to obtain stationary endogenous variables, it is necessary to define the

following transformed variables:

k̂t ≡
Kt

Nσ
t

, ĉt ≡
Ct
Nσ
t

, ŷt ≡
Yt
Nσ
t

, ât ≡
At

N
λ/(1−φ)
t

, (19b)

where σ ≡ 1 + (1/ρ−α)λ
(1−α)(1−φ)

> 0 is a composite parameter. For ease of exposition, in line with

Eicher and Turnovsky (2001), k̂, ĉ, ŷ, and â are dubbed the scale-adjusted capital, consump-

tion, output, and R&D varieties, respectively. Based on the transformed variables and the

equilibrium defined in subsection 2.5, the economy in the steady state can be described by

the following set of equations:

r = (1− τK)rK − δ = β + gY , (20a)

s =

η−1
η

α
1−α(1+ψ)gA

r − gY +
(

1 + η−1
η

α
1−α

)
(1+ψ)gA

, (20b)

k̂

ŷ
=

α

ηrK
, (20c)

(1− ζ)
ŷ

k̂
=

ĉ

k̂
+ gY + δ, (20d)

ŷ = â1/ρ−αk̂α ((1− s)l)1−α , (20e)

gA =
1

1 + ψ

ς (sl)λ

â1−φ , (20f)

χl

(1− l) =
(1− τL)(1− α)

(1− s)
ŷ

ĉ
, (20g)

τL =
1− s
1− α

(
ζ − τK

α

η

)
, (20h)
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in which eight endogenous variables r, s, ĉ, k̂, â, ŷ, l, τL are determined.

Of particular note, our main focus is on the examination of the capital tax. By holding

the proportion of the government spending constant, an increase in the capital income tax

will be coupled with a reduction in the labor income tax. Therefore, the literature on the

Chamley-Judd result generally assumes that the labor income tax endogenously adjusts to

balance the government budget. This approach has been dubbed as “tax shifting”or “tax

swap”in the literature. Our analysis follows this standard approach in the literature.

3.1 Comparative static analysis

In this section, we analyze the effects of capital taxation on the R&D share s of labor, the

endogenous labor income tax rate, labor supply, and other scale-adjusted variables: â, k̂, ĉ,

and ŷ.7

The long-run R&D labor share, s, is given by

s =

η−1
η

α
1−α(1+ψ)gA

r − gY +
(

1 + η−1
η

α
1−α

)
(1+ψ)gA

. (21a)

It follows from the above equation that, in the steady state, a change in the capital income tax

rate (21a) does not affect the R&D labor share (i.e., ∂s/∂τK = 0). The intuition underlying

∂s/∂τK = 0 can be grasped as follows. The non-arbitrage condition between physical capital

and R&D equity reported in (20a) requires that the return on physical capital be equal to the

return on R&D equity. Given that the return on R&D equity, r = β+ 1
1−α

(
1
ρ
− α

)
gA + n,

is independent of the capital tax rate, the capital income tax rate does not affect the return

on R&D equity and the R&D labor share. Therefore, our analysis does not rely on capital

taxation having a direct effect on the allocation of R&D and production labor. Instead,

our analysis is based on the trade-off between labor supply and capital investment as in the

standard Chamley-Judd setting.

From (20h), we have:

τL =
1− s
1− α

(
ζ − τK

α

η

)
, (21b)

Based on (21a), we have:

7We solve the dynamic system in Appendix B, and a detailed derivation of the comparative static analysis
is presented in Appendix C.
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∂τL
∂τK

= −1− s
η

α

1− α < 0. (21c)

The above equation shows that an increase in the capital income tax rate is coupled with a

reduction in the labor income tax rate.

Given a constant capital income tax rate τK , labor supply in the steady state is given

by:

l = 1− χ

χ+ 1

[(1−ζ)−(δ+gY )
α(1−τK )

η(β+δ+gY )
]

(1−τL)(1−α)
(1−s)

. (22a)

It is straightforward from eq.(22a) to infer the following result:

∂l

∂τK
=

αβ( 1−s
1−α)[1− ζ + η−1

η
α(δ+gY )

β+(1+ψ)gA
](1− l)l

η(β + δ + gY )(1− τL)[1− ζ − (δ + gY ) α(1−τK)
η(β+δ+gY )

]
> 0. (22b)

Equation (22b) indicates that, when taxes shift from a labor income tax to a capital

income tax, a rise in the capital income tax rate leads to an increase in labor supply. The

intuition underlying this result can be explained as follows. In response to a rise in the

capital income tax rate, the following effect emerges. Raising the capital tax rate reduces

the labor income tax rate (see eq. (21b)) and raises the after-tax wage income, thereby

exerting a positive effect on labor supply. Therefore, a rise in the capital income tax rate is

accompanied by an increase in labor supply.

Moreover, the scale-adjusted R&D varieties â is given by:

â =

[
ς

(1 + ψ)gA

]1/(1−φ)

(sl)λ/(1−φ), (23a)

where s and l are reported in eqs. (21a) and (22a). With ∂s/∂τK = 0, it is quite easy from

eq. (23a) to derive that:

∂â

∂τK
=

λâ

(1− φ)l

∂l

∂τK
> 0. (23b)

Equation (23b) indicates that a rise in the capital income tax rate boosts scale-adjusted

R&D varieties. The intuition is clear. Following a rise in the capital income tax rate that is

coupled with a decline in the labor income tax rate, the household is motivated to increase

its labor supply. This in turn increases labor input allocated to the R&D sector (LA = Nsl).
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Then, as reported in eq. (23a), given that scale-adjusted R&D varieties â is increasing in

the R&D labor input sNl, â will increase in response to a rise in τK .

From eqs. (20a), (20c), (20d), (23a), and (20e), we can infer that:

ŷ =

[
ς

(1 + ψ)gA

] 1/ρ−α
(1−α)(1−φ)

(sl)
1/ρ−α
1−α

λ
1−φ

[
α(1− τK)

η(β + δ + gY )

] α
1−α

(1− s)l, (24a)

where

∂ŷ

∂τK
=

[
− α

(1− α)(1− τK)
+
σ

l

∂l

∂τK

]
ŷ
>

<
0. (24b)

Equation (24b) indicates that a rise in the capital income tax rate has ambiguous effects on

the scale-adjusted output ŷ. As shown in eq. (24b), two conflicting effects emerge following

a rise in the capital income tax rate. First, a rise in the capital income tax rate shrinks

capital investment, which in turn generates a negative impact on output. Second, a rise in

the capital income tax rate is accompanied by a fall in the labor income tax rate, which

motivates the household to provide more labor supply. This increase in labor supply implies

that more labor input is available for the R&D sector and in turn boosts R&D varieties,

thereby contributing to a positive effect on output. If labor supply is exogenous (χ = 0), the

second positive effect is absent (∂l/∂τK = 0), and a higher capital income tax rate lowers

output. However, if labor supply is endogenous (χ > 0), the two opposing effects are present,

and the output effect of capital income taxation depends upon the relative strength between

these two effects.

From eqs. (20a), (20c), and (20d), we have:

k̂ =
(1− τK)Φ

(δ + gY )
ŷ, (25a)

ĉ = [(1− ζ)− (1− τK)Φ]ŷ, (25b)

where Φ ≡ α(δ+gY )
η(β+δ+gY )

is a composite parameter. Based on eqs. (25a) and (25b), the effects

of τK on k̂ and ĉ can be expressed as:
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∂k̂

∂τK
= − Φ

(δ + gY )
ŷ +

(1− τK)Φ

(δ + gY )

ŷ

∂τK
(26a)

= [σ
∂l

l∂τK
− 1

(1− α)(1− τK)
]
(1− τK)Φ

(δ + gY )
ŷ
>

<
0,

∂ĉ

∂τK
= Φŷ + [(1− ζ)− (1− τK)Φ]

∂ŷ

∂τK
(26b)

= {Φ + [(1− ζ)− (1− τK)Φ][σ
∂l

l∂τK
− α

(1− α)(1− τK)
]}ŷ>

<
0.

The intuition behind eqs. (26a) and (26b) can be explained as follows. It is clear in

eq. (25a) that capital income taxation affects scale-adjusted capital k̂ through two channels.

The first channel is the capital-output ratio k̂/ŷ = (1−τK)Φ
(δ+gY )

, and the second channel is the

level of scale-adjusted output ŷ. The first term after the first equality in eq. (26a) indicates

that the first channel definitely lowers the level of k̂. Moreover, as shown in eq. (24b),

the second channel may either raise or lower the level of k̂ since capital taxation leads to

an ambiguous effect on ŷ. As a consequence, the net effect of capital taxation on the scale-

adjusted capital stock k̂ is still uncertain. Similarly, as indicated in eq. (25b), capital income

taxation also affects ĉ through two channels. The first channel is the consumption-output

ratio ĉ/ŷ = [(1−ζ)− (1−τK)Φ], and the second channel is the level of scale-adjusted output

ŷ. The first channel definitely boosts the level of ĉ, while the second channel may either

raise or lower the level of ĉ since capital taxation leads to an ambiguous effect on ŷ. As

a consequence, the net effect of capital taxation on scale-adjusted consumption ĉ remains

ambiguous.

4 Quantitative results

In this section, we simulate the transitional dynamic effects of capital taxation and compute

the optimal capital tax rate by performing a quantitative analysis.8 We calibrate the para-

meters of our theoretical model based on US data to quantify the optimal capital tax. Then

we explore how the optimal capital tax responds to important parameters that feature R&D

externalities and the government size.9

By dropping the exogenous terms, the life-time utility of the representative household

8We describe the dynamic system of the model in Appendix B.
9We start from the same initial steady state when we vary the value of each parameter.
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reported in eq. (1) can be expressed as:

U =

∫ ∞
0

e−βt [ln ĉt + χ ln(1− lt)] dt, (27)

in which ĉt and lt are functions of τK . The government chooses the capital income tax rate

τK to maximize eq. (27) that includes the transitional dynamics, while balancing the budget,

eq. (18), using the labor tax.10

4.1 Calibration

To carry out a numerical analysis, we first choose a baseline parameterization, as reported

in Table 1. Our model has eleven parameter values to be assigned. These parameters are

either set to a commonly used value in the existing literature or calibrated to match some

empirical moments in the US economy. We now describe each of them in detail. In line with

Andolfatto et al. (2008) and Chu and Cozzi (2018), the labor income share 1 − α and the
discount rate β are set to standard values 0.4 and 0.05, respectively. The population growth

rate n is set to 0.011 as used by Conesa et al. (2009). The physical capital depreciation rate

is set to 0.0318 so that the initial capital-output ratio is 2.5 as in Lucas (1990). The initial

capital tax rate τK is set to 0.3 based on the average US effective tax rate estimated by Carey

and Tchilingurian (2000). A similar value of the capital income tax rate has been adopted in

Domeij (2005) and Chen and Lu (2013). As for the government size (the ratio of government

spending to output), data for the US indicate that this is around 20 percent (Gali, 1994),

and has slightly increased in recent years. We therefore set ζ to be 0.22, which is the average

level during 2001-2013, to reflect its increasing trend. The parameter for leisure preference

χ is chosen as 1.5901 to make hours worked around one third of total hours.

10The numerical approach is basically consistent with Aghion et al. (2013), except that their initial capital
income tax rate is set to 0%, while we consider a value of 30% to fit the US data.
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Table 1. Benchmark Parameterization

Definition Parameter Value Source/Target

Labor income share 1− α 0.6 Andolfatto et al. (2008)

Discount rate β 0.05 Chu and Cozzi (2018)

Population growth rate n 0.011 Conesa et al. (2009)

Initial capital tax rate τK 0.3 Carey and Tchilingurian (2000)

Government size ζ 0.22 Data

Leisure preference χ 1.5901 Total hours worked = 1/3

R&D productivity ς 1 Normalized11

Standing on toes effect λ 0.5 Benchmark

Substitution parameter ρ 2.2727 Monopolistic markup = 1.1

Standing on shoulders effect φ 0.9593 Output growth rate = 2%

Size of innovation cluster ψ 0.25 Comin (2004)

Physical capital depreciation rate δ 0.0318 Capital-output ratio = 2.5

Our parameterization regarding the R&D process basically follows the approach in Jones

and Williams (2000). First, we normalize the R&D productivity ς to unity. The value of

the parameter for the standing on toes effect λ is somewhat diffi cult to calibrate because, as

argued by Stokey (1995), the empirical literature does not provide much guidance on such a

parameter. In our analysis, we thus choose an intermediate value λ = 0.5 as a benchmark,

but we will allow it to vary over the whole interval from 0 to 0.564.12 The substitution

parameter ρ is closely related to the markup of the intermediate firms. We set ρ to be

2.2727 such that, given 1− α, the (unconstrained) markup in our economy is 1.1, which lies
within the reasonable range estimated for US industries (e.g., Laitner and Stolyarov, 2004;

Yang, 2018). Next, we use the output growth rate to calibrate the extent of the standing on

shoulders effect φ. In our model we have:

gY =
1

1− α

(
1

ρ
− α

)
gA + n. (28)

Given that gA = λn/(1− φ) and that we have already assigned values to 1− α, ρ, n and λ,
we can then choose φ to target the empirical level of the output growth rate in the US, which

is around 2%. This results in φ = 0.9593 as our baseline value. Finally, as a benchmark we

11Our results are independent of the value of ς.
12If the value of λ is over 0.564, the second-order condition of the government’s maximization with respect

to τK will not be satisfied.
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choose the size of the innovation cluster ψ = 0.25 by following Comin (2004). In this case

the markup is not bound by the adoption constraint. If the value of ψ is large, the markup

will then be constrained and determined by this parameter. In subsection 4.3 we will run ψ

from 0 to 0.515 as a robustness check.

4.2 The optimal capital tax with transitional dynamics

Under our benchmark parameterization, Figure 1 plots the relationship between the level of

welfare and the rate of capital income tax, which exhibits an inverted-U shaped relationship.

Of particular note, the optimal capital tax is positive under our benchmark parameters, and

its value is around 11.9%. The Chamley-Judd result of zero capital tax does not hold in our

R&D-based growth model.

Figure 1: The level of welfare and the rate of capital income tax

The intuition underlying this result is as follows. Given that the government is limited to

capital and labor taxation to finance a fix amount of the government expenditure, not taxing

capital income implies that the labor income must be taxed at a higher rate. Although a

zero capital tax effi ciently leaves the capital market undistorted, a high labor tax distorts

the labor market severely by decreasing the after-tax wage income and in turn reduces total

labor supply. As a consequence, there is less labor devoted to the production in the R&D

sector, which then results in fewer equilibrium varieties for the final-good production, and

ultimately depresses the level of consumption and welfare.

Although Figure 1 suggests a positive optimal capital tax, we should note that this result
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is obtained under our benchmark parameters, and it may change when the innovation process

exhibits different degrees of R&D externalities. Thus, our goal is not to conclude that it

is always right to tax capital, but to highlight that in achieving the social optimum, it is

necessary to balance both distortions in the capital and labor markets. In view of this, an

extreme case of the zero capital tax is often suboptimal. More importantly, we make an

attempt to give guidance on which R&D mechanisms are at play in influencing the optimal

capital tax, which we will show in the next subsection.

4.3 Policy implications of R&D externalities

In this subsection, we investigate how the optimal capital tax responds to relevant parame-

ters, in particular those related to the innovation process. More importantly, we shed some

light on the roles of R&D externalities in the design of optimal tax policies. To this end, we

provide a robustness check for whether the positive optimal capital tax still survives under

various scenarios. In what follows, we propose some relevant parameters that need to be

considered by the policy-makers. The results are depicted in Figures 2 to 6. Our robustness

analysis generates several implications.

Figure 2: The optimal capital tax rate and the stepping on toes effect

First, Figures 2 and 3 show that the optimal capital tax rate is increasing in λ (the

stepping on toes effect) and φ (the standing on shoulders effect). With suffi ciently small

values of λ and φ, the optimal capital income tax is negative. Notice that a higher λ implies

that the negative duplication externality is small, and a higher φ means that the positive

spillover effect of R&D is relatively strong. Both cases imply a similar circumstance in which
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the innovation process is more productive, and in which underinvestment in R&D is more

likely. Under such a situation, the welfare cost of depressing innovation by raising the labor

income tax is larger. Therefore, the government is inclined to increase the capital tax while

reducing the labor tax.

Figure 3: The optimal capital tax rate and the standing on shoulders effect

Second, Figure 4 shows that the optimal capital income tax and the substitution para-

meter ρ exhibit an inverted-U shaped relationship. A lower ρ is associated with a higher

monopolistic markup η, regardless of whether the adoption constraint is binding or not. The

substitution parameter mainly affects the optimal capital tax in three different ways. First,

when η is large (when ρ is small), the degree of the intermediate firms’monopoly power is

strong. To correct this distortion, the government tends to subsidize capital to offset the gaps

between price and the marginal cost; see Judd (1997, 2002). Second, when η is large (when

ρ is small), the private value of inventions increases. As a result, equilibrium R&D increases,

which in turn makes R&D overinvestment more likely. Therefore, the government tends to

raise the tax on labor because R&D uses labor in our model. These two effects indicate that

the optimal capital tax should be decreasing in the markup as in previous studies. Third,

a small ρ amplifies the productivity of varieties in final-good production and thus amplifies

the effect of gA on gY (see eq. (28)). In this case, the government is inclined to subsidize

labor by taxing capital since the R&D sector uses labor. This last effect indicates that the

optimal capital tax rate is decreasing in the elasticity of substitution between intermediate

goods (or increasing in the markup). Figure 4 shows that the first two effects dominate

when ρ is small and the third effect dominants when ρ becomes suffi ciently large. Thus the

optimal capital tax reverses as ρ exceeds a threshold value.
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Figure 4: The optimal capital tax rate and the substitution parameter

Third, Figure 5 shows that the optimal capital tax increases in response to a rise in

the size of the innovation cluster (creative destruction). To explain the intuition, we first

distinguish three effects that creative destruction may have on the incentive to engage in

R&D. The first positive effect comes from the R&D firm being able to earn profits even for

those of its products that do not really increase the variety of intermediate goods (note that

πA,t = PA,t(1 + ψ)Ȧt − wtLA,t).13 This is referred to as the “carrot”by Jones and Williams
(2000). The second negative effect arises, as exhibited in eq. (15), from a higher ψ that

decreases the equilibrium price of the products in the presence of free entry, even though it

increases the products sold by the R&D firm. The third negative effect is associated with

the no-arbitrage condition for the value of a variety, which is displayed in eq. (16). Due

to creative destruction, existing goods have a probability of being replaced by new goods,

and this probability increases with the degree of creative destruction. Therefore, creative

destruction increases the expected capital loss in terms of the return on the equity shares,

and in turn reduces the incentive to engage in R&D. Jones and Williams (2000) dub this

effect as the “stick”. In the model, the first and second effects approximately offset each

other, leaving the stick effect as the main influence of creative destruction on R&D. As a

result, a higher ψ discourages R&D, and hence the government should increase the capital

tax and reduce the labor tax in order to boost labor supply and R&D labor.

Finally, the optimal capital tax is increasing in the government spending ratio ζ (see

13The R&D firm can earn profits from its whole products (1 + ψ)Ȧ, in which ψȦ does not contribute to
the increase of varieties.
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Figure 5: The optimal capital tax rate and creative destruction

Figure 6). This result is consistent with Aghion et al. (2013) and Lu and Chen (2015).14

When the need for public expenditure is suffi ciently small, the government can collect labor

tax revenues to finance the government spending and also to subsidize capital. Note that in

this case the monopoly effect dominates the R&D effect so that the optimal capital tax rate

becomes negative. As the size of government expenditure increases, it is not promising to

rely solely on raising the labor tax, because the distortion to the R&D sector would be too

strong. In this case, it becomes optimal to shift some of the tax burden to capital.

Figure 6: The optimal capital tax and the government size

14Lu and Chen (2015) show that in an exogenous growth model with a given share of government expen-
diture in output, the optimal capital income tax is positive and increasing with the the share of government
expenditure. The intuition is that capital accumulation reduces the discounted net marginal product of next
period’s capital by way of increasing government expenditure. Thus, the government should tax capital to
correct this distortion.
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As we have noted earlier, our result of a positive optimal capital income tax is obtained

under the benchmark parameters. Before ending this section, it is worthwhile to briefly

discuss how plausible the above parameters fall into the range that implies a negative optimal

capital tax rate. First, the optimal capital tax rate becomes negative if λ < 0.454, i.e., the

stepping on toes effect is larger. This seems not very likely, however, as Jones and Williams

(2000) point out that the lower bound of λ is about 0.5. Second, the optimal capital tax

rate becomes negative if the standing on shoulders effect is smaller, i.e., φ < 0.948. For the

first-generation R&D-based growth models a la Romer (1990), φ = 1, so that our result of a

positive optimal capital income tax always holds. However, given that φ can take a wide range

of values in the literature, it calls for further consideration on the positive optimal capital

tax before identifying the value of this parameter. Third, for the substitution parameter ρ,

the threshold value that will result in a negative optimal capital tax is ρ < 2.14. This implies

a monopolistic markup higher than 1.17. Fourth, the optimal capital tax rate is positive for

the whole possible values of the size of the innovation cluster ψ. Finally, the optimal capital

tax rate is negative if the government spending ratio is less than 13.8%, i.e., ζ < 0.138. This

threshold value is much smaller than that in Aghion et al. (2013), in which the government

spending ratio required for a positive optimal capital tax rate is around 40%.

5 Conclusion

In this paper, we have examined whether the Chamley-Judd result of zero optimal capital

taxation is valid in a non-scale innovation-based growth model. By calibrating our model to

the US economy, our result shows that the optimal capital income tax is positive, at a rate

of around 11.9 percent. We examine how the optimal capital tax rate responds to various

R&D externalities. The optimal capital tax rate is higher when (i) the “stepping on toes

effect” is smaller, (ii) the “standing on shoulders effect“ is stronger, or (iii) the extent of

creative destruction is greater. We also find that the optimal capital tax is sensitive to the

parameter that determines the monopolistic markup. An inverted-U relationship is found

between these two variables.

Some extensions for future research are worth noting. First, since R&D investment usu-

ally has liquidity problems (Lach, 2002), it would be relevant to introduce a credit constraint

on R&D investment into our model. Second, it would be interesting to examine the optimal

capital tax in an endogenous growth model where both innovation and capital accumula-

tion are the driving forces of economic growth (see, e.g., Iwaisako and Futagami, 2013; Chu
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et al., 2018). These directions will no doubt generate new insights into the debate on the

Chamley-Judd result.
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Appendix A. Deriving the steady-state growth rate

To solve for the steady-state growth rate of the economy, from eqs. (13) and (14) we have:

Ȧt
At

=
ς

1 + ψ

LλA,t

A1−φ
t

. (A1)

where gA,t = Ȧt/At. Let gZ denote gZ,t = Ż
Z
the growth rate of any generic variable Z, and

drop the time subscript when referring to any variables in the steady state. The steady-state

growth rate of varieties is given by:

gA =
ς

1 + ψ

LλA
A1−φ . (A2)

Moreover, the R&D labor share is st = LA,t/(Ntlt). In so doing, eq. (A2) can alternatively

be expressed as:

gA =
ς

1 + ψ

(sNl)λ

A1−φ . (A3)

By taking logarithms of eq. (A3) and differentiating the resulting equation with respect to

time, we have the following steady-state expression:

gA =
λ

1− φn. (A4)

Equipped with the symmetric feature x(i) = x, the equilibrium condition for the capital

market K = Av, and the production in the intermediate-good sector x = v, the aggregate

production function can be rewritten as:

Yt = A
1
ρ
−α

t LαtK
1−α
t . (A5)

Taking logarithms of eq. (A5) and differentiating the resulting equation with respect to time,

we can infer the following result:

gY =
(1
ρ
− α)

1− α gA + n. (A6)

Inserting eq. (A4) into eq. (A6) yields:

gY = σn, (A7)
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where σ ≡ 1 +
( 1
ρ
−α)

1−α
λ

1−φ is a composite parameter.

We now turn to solve the steady-state R&D labor share. In the long run, substituting

Ȧt = gAAt and differentiating the resulting equation with respect to time gives rise to:

ṖA/PA = gY − gA (A8)

From eqs. (12), (15), (17), in the steady state we have:

πx =
η − 1

η
α
Y

A
(A9)

PA =
s

1− s
(1− α)Y/A

(1 + ψ)gA
(A10)

r =
πx
PA

+
ṖA
PA
− ψgA (A11)

Substituting eqs. (A8), (A9), and (A10) into eq. (A11) yields the result:

r =

η−1
η
αY/A

s
1−s

(1−α)Y/A
(1+ψ)gA

+ gY − (1 + ψ)gA (A12)

Based on eq. (A12), we have the stationary R&D labor share s as follows:

s =

η−1
η

α
1−α(1 + ψ)gA

r − gY + (1 + η−1
η

α
1−α)(1 + ψ)gA

(A13)
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Appendix B. Transition dynamics

This appendix solves the dynamic system of the model under tax shifting from labor income

taxes to capital income taxes. The set of equations under the model is expressed by:

1

ct
= qt, (B1)

χ = qt(1− τL,t)wt(1− lt), (B2)

rt = (1− τK)rK,t − δ, (B3)
ċt
ct

= rt − n− β, (B4)

wt = (1− α)
Yt
LY,t

, (B5)

ηrK,t = αA
1
ρ
−1

t L1−α
Y,t x

α−1
t , (B6)

rK,tKt =
α

η
Yt, (B7)

πx,t =
η − 1

η
α
Yt
At
, (B8)

rtPA,t = πx,t + ṖA,t − ψ
Ȧt
At
PA,t, (B9)

Gt = ζYt, (B10)

Gt = Nt(τKrK,tkt + τL,twtlt), (B11)

Yt = A
1/ρ−α
t L1−α

Y,t K
α
t , (B12)

K̇t = Yt − Ct −Gt − δKt, (B13)

Ȧt
At

=
ς

1 + ψ

LλA,t

A1−φ
t

, (B14)

PA,t =
st

1− st
(1− α)Yt

(1 + ψ)Ȧt
, (B15)

Ntlt = LY,t + LA,t. (B16)

The above 16 equations determine 16 unknowns {ct, l t, At, K t, LY,t, x t, rK,t, πx,t r t, Gt, τL,t,

Y t, q t, LA,t, PA,t, w t}, where qt is the Hamiltonian multiplier, Ct = Ntct, Kt ≡ Ntkt = Atxt,

and st= LA,t/N tlt. Based on Kt = Ntkt = Atxt, and eqs. (B1), (B2), (B5), and (B12), we

can obtain:

χ =
1

ct
(1− τL,t)(1− α)

Yt
LY,t

(1− lt). (B17a)
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From eqs. (B5), (B7), and (B11), we have:

τL,t = (1− st)
ζ − α

η
τK

1− α . (B17b)

Moreover, to solve the balanced growth rate, we define the following transformed variables:

k̂t ≡
Kt

Nσ
t

, ĉt ≡
Ct
Nσ
t

, ŷt ≡
Yt
Nσ
t

, ât ≡
At

N
λ/(1−φ)
t

, st ≡ LA,t/Ntlt. (B18)

Based on eqs. (B16), (B15), (B17a), and the above definitions, we can obtain:

χ

(1− lt)
=

1

ĉt
[1− (1− st)

ζ − α
η
τK

1− α ](1− α)â
1/ρ−α
t (k̂t)

α[1− st)lt]−α. (B19a)

From eq. (B19a), we can infer the following expression:

lt = lt(k̂t, ât, ĉt, st; τK), (B19b)

where

∂lt

∂k̂t
=

α

k̂t(
lt

1−lt + α)
lt, (B20a)

∂lt
∂ât

=
(1/ρ− α)

ât(
lt

1−lt + α)
lt, (B20b)

∂lt
∂ĉt

= − lt

ĉt(
lt

1−lt + α)
, (B20c)

∂lt
∂st

=

τL,t
(1−τL,t) + α

(1− st)( lt
1−lt + α)

lt, (B20d)

∂lt
∂τK

=
(1− st) α

η(1−α)

(1− τL,t)( lt
1−lt + α)

lt. (B20e)

Based on (B3), (B4), (B7), (B12), (B18), and Ct = Ntct, we have:

gĉ,t ≡
dĉt/dt

ĉt
= (1− τK)

α

η
(ât)

1/ρ−α[
(1− st)lt(k̂t, ât, ĉt, st; τK)

k̂t
]1−α − δ − β − gY . (B21)

From eqs. (B10), (B12), (B13), and (B18), we can directly infer:
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gk̂,t ≡
dk̂t/dt

k̂t
= (1− ζ)(ât)

1/ρ−α[
(1− st)lt(k̂t, ât, ĉt, st; τK)

k̂t
]1−α − ĉt

k̂t
− δ − gY . (B22)

According to eqs. (B14) and (B18), we can further obtain:

gâ,t ≡
dât/dt

ât
=

ς

1 + ψ

[stlt(k̂t, ât, ĉt, st; τK)]λ

â1−φ
t

− gA. (B23)

In what follows, to simplify the notation we suppress those arguments of the labor supply

function. From eq. (B18), taking logarithms of eqs. (B19a) and (B12) and differentiating

the resulting equations with respect to time, we have:

gŷ,t = (1/ρ− α)gâ,t + αgk̂,t + (1− α)(l̇t/lt −
ṡt

1− st
), (B24)

l̇t/lt = {(1/ρ− α)gâ,t + αgk̂,t − gĉ,t − [α + τL,t/(1− τL,t)]}/[α + lt/(1− lt)]. (B25)

Taking logarithms of eq. (B15) differentiating the resulting equation with respect to time,

we obtain:

ṖA,t
PA,t

= (1/ρ− α− φ)gâ,t + αgk̂,t + (1− λ+ α
st

1− st
)
ṡt
st

+ (1− λ− α)
l̇t
lt

+ gY − gA. (B26)

Combining eqs. (B9), (B15), (B18), (B21), (B24), (B25), and (B26) together, we obtain:

dst/dt

st
= {β − [

(η − 1)α(1 + ψ)(1− st)
(1− α)ηst

− ψ](gA + gâ,t) + φgâ,t + gA − [1 +
1− λ− α

α + lt/(1− lt)
]

×[(1/ρ− α)gâ,t + αgk̂,t − gĉ,t]}/{1− λ+ α
st

1− st
+

1− λ− α
α + lt/(1− lt)

(α +
τL,t

1− τL,t
)

st
1− st

}.

(B27)

Note that rt − gY − gĉ,t = β. As a result, in the steady state we have r − gY = β.

Inserting eq. (B18) into eq. (B17b) yields:
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τL,t = (1− st)
ζ − α

η
τK

1− α . (B28)

Based on eqs. (B21), (B22), (B23),(B27), and (B28), the dynamic system can be ex-

pressed as:

dk̂t/dt

k̂t
= (1− ζ)(ât)

1/ρ−α[
(1− st)lt

k̂t
]1−α − ĉt

k̂t
− δ − gY , (B29a)

dât/dt

ât
=

ς

1 + ψ

(stlt)
λ

â1−φ
t

− gA, (B29b)

dĉt/dt

ĉt
= (1− τK)

α

η
(ât)

1/ρ−α[
(1− st)lt

k̂t
]1−α − δ − β − gY , (B29c)

dst/dt

st
= {β − [

(η − 1)α(1 + ψ)(1− st)
(1− α)ηst

− ψ](gA + gâ,t) + φgâ,t + gA − [1 +
1− λ− α

α + lt/(1− lt)
]

×[(1/ρ− α)gâ,t + αgk̂,t − gĉ,t]}/{1− λ+ α
st

1− st
+

1− λ− α
α + lt/(1− lt)

(α +
τL,t

1− τL,t
)

st
1− st

}.

(B29d)

Linearizing eqs. (B29a), (B29b), (B29c), and (B29d) around the steady-state equilibrium

yields: 
dk̂t/dt

dât/dt

dĉt/dt

dst/dt

 =


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44




k̂t − k̂
ât − â
ĉt − ĉ
st − s

+


b15

b25

b35

b45

 dτK , (B30)

where

b11 = ∂(dk̂t/dt)

∂k̂t
, b12 = ∂(dk̂t/dt)

∂ât
, b13 = ∂(dk̂t/dt)

∂ĉt
, b14 = ∂(dk̂t/dt)

∂st
, b15 = ∂(dk̂t/dt)

∂τK
,

b21 = ∂(dât/dt)

∂k̂t
, b22 = ∂(dât/dt)

∂ât
, b23 = ∂(dât/dt)

∂ĉt
, b24 = ∂(dât/dt)

∂st
, b25 = ∂(dât/dt)

∂τK
,

b31 = ∂(dĉt/dt)

∂k̂t
, b32 = ∂(dĉt/dt)

∂ât
, b33 = ∂(dĉt/dt)

∂ĉt
, b34 = ∂(dĉt/dt)

∂st
, b35 = ∂(dĉt/dt)

∂τK
,

b41 = ∂(dst/dt)

∂k̂t
, b42 = ∂(dst/dt)

∂ât
, b43 = ∂(dst/dt)

∂ĉt
, b44 = ∂(dst/dt)

∂st
, b45 = ∂(dst/dt)

∂τK
.

Due to the complicated calculations, we do not list the analytical results for bij, where

i ∈ {1, 2, 3, 4, 5} and j ∈ {1, 2, 3, 4, 5}.
Let `1, `2, `3, and `4 be the four characteristic roots of the dynamic system. Due to

the complexity involved in calculating the four characteristic roots, we do not try to prove

the saddle-point stability analytically. Instead, via a numerical simulation, we show that
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the dynamic system has two positive and two negative characteristic roots. For expository

convenience, in what follows let `1 and `2 be the negative root, and `3 and `4 be the positive

roots. The general solution is given by:
k̂t

ât

ĉt

st

 =


k̂(τK)

â(τK)

ĉ(τK)

s(τK)

+


1 1 1 1

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44




D1e
`1t

D2e
`2t

D3e
`3t

D4e
`4t

 . (B31a)

where D1, D2, D3, and D4 are undetermined coeffi cients and

4j =

∣∣∣∣∣∣∣
b12 b13 b14

b22 − `j b23 b24

b32 b33 − `j b34

∣∣∣∣∣∣∣ ; j ∈ {1, 2, 3, 4}, (B31b)

h2j =

∣∣∣∣∣∣∣
`j − b11 b13 b14

−b21 b23 b24

−b31 b33 − `j b34

∣∣∣∣∣∣∣ /4j ; j ∈ {1, 2, 3, 4}, (B31c)

h3j =

∣∣∣∣∣∣∣
b12 −b11 b14

b22 − `j −b21 b24

b32 −b31 b34

∣∣∣∣∣∣∣ /4j ; j ∈ {1, 2, 3, 4}, (B31d)

h4j =

∣∣∣∣∣∣∣
b12 b13 `j − b11

b22 − `j b23 −b21

b32 b33 − `j −b31

∣∣∣∣∣∣∣ /4j ; j ∈ {1, 2, 3, 4}. (B31e)

The government changes the capital tax rate τK from τK0 to τK1 at t=0. Based on eqs.

(B31a)-(B31e), we employ the following equations to describe the dynamic adjustment of k̂t,

ât, ĉt and st:
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k̂t =

{
k̂(τK0);

k̂(τK1) +D1e
`1t +D2e

`2t +D3e
`3t +D4e

`4t;

t = 0−

t ≥ 0+
(B32a)

ât =

{
â(τK0);

â(τK1) + h21D1e
`1t + h22D2e

`2t + h23D3e
`3t + h24D4e

`4t;

t = 0−

t ≥ 0+

(B32b)

ĉt =

{
ĉ(τK0);

ĉ(τK1) + h31D1e
`1t + h32D2e

`2t + h33D3e
`3t + h34D4e

`4t;

t = 0−

t ≥ 0+

(B32c)

st =

{
s(τK0);

s(τK1) + h41D1e
`1t + h42D2e

`2t + h43D3e
`3t + h44D4e

`4t;

t = 0−

t ≥ 0+

(B32d)

where 0− and 0+ denote the instant before and instant after the policy implementation,

respectively. The values for D1, D2, D3 and D4 are determined by:

k̂0− = k̂0+ , (B33a)

â0− = â0+ , (B33b)

D3 = D4 = 0. (B33c)

Equations (B33a) and (B33b) indicate that both k̂t (= Kt
Nσ
t
) and ât (= At

N
λ/(1−φ)
t

) remain

intact at the instant of policy implementation since Kt, At, and Nt are predetermined vari-

ables. Equation (B33c) is the stability condition which ensures that all k̂t, ât, ĉt and st
converge to their new steady-state equilibrium. By using eqs. (B33a) and (B33b), we can

obtain:

D1 =
[k̂(τK0)− k̂(τK1)]h22 − [â(τK0)− â(τK1)]

h22 − h21

, (B34a)

D2 =
[â(τK0)− â(τK1)]− [k̂(τK0)− k̂(τK1)]h21

h22 − h21

. (B34b)

Inserting eqs. (B33c), (B34a), and (B34b) into eqs. (B32a)-(B32d) yields:
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k̂t =


k̂(τK0);

k̂(τK1) + [k̂(τK0)−k̂(τK1)]h22−[â(τK0)−â(τK1)]
h22−h21 e`1t

+ [â(τK0)−â(τK1)]−[k̂(τK0)−k̂(τK1)]h21
h22−h21 e`2t;

t = 0−

t ≥ 0+

ât =


â(τK0);

â(τK1) + {[k̂(τK0)−k̂(τK1)]h22−[â(τK0)−â(τK1)]}h21e`1t
h22−h21

+ {[â(τK0)−â(τK1)]−[k̂(τK0)−k̂(τK1)]h21}h22e`2t
h22−h21 ;

t = 0−

t ≥ 0+

ĉt =


ĉ(τK0);

ĉ(τK1) + {[k̂(τK0)−k̂(τK1)]h22−[â(τK0)−â(τK1)]}h31e`1t
h22−h21

+ {[â(τK0)−â(τK1)]−[k̂(τK0)−k̂(τK1)]h21}h32e`2t
h22−h21 ;

t = 0−

t ≥ 0+

st =


s(τK0);

s(τK1) + {[k̂(τK0)−k̂(τK1)]h22−[â(τK0)−â(τK1)]}h41e`1t
h22−h21

+ {[â(τK0)−â(τK1)]−[k̂(τK0)−k̂(τK1)]h21}h42e`2t
h22−h21 ;

t = 0−

t ≥ 0+
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Appendix C. Proof of comparative statics

From eqs. (B29a)-(B29d), we have:

dk̂t/dt

k̂t
= (1− ζ)(ât)

1/ρ−α(
lY,t

k̂t
)1−α − ĉt

k̂t
− δ − gY , (C1a)

dât/dt

ât
=

ς

1 + ψ

[lt(k̂t, ât, ĉt, lY,t; τK)− lY,t]λ

â1−φ
t

− gA, (C1b)

dĉt/dt

ĉt
= (1− τK)

α

η
(ât)

1/ρ−α(
lY,t

k̂t
)1−α − δ − β − gY , (C1c)

dst/dt

st
= {β − [

(η − 1)α(1 + ψ)(1− st)
(1− α)ηst

− ψ](gA + gâ,t) + φgâ,t + gA − [1 +
1− λ− α

α + lt/(1− lt)
]

×[(1/ρ− α)gâ,t + αgk̂,t − gĉ,t]}/{1− λ+ α
st

1− st
+

1− λ− α
α + lt/(1− lt)

(α +
τL,t

1− τL,t
)

st
1− st

}.

(C1d)

In the steady state dk̂t/dt

k̂t
= dât/dt

ât
= dĉt/dt

ĉt
= dst/dt

st
= 0, we then have the following steady-

state results:

ĉ

k̂
= (1− ζ)(â)1/ρ−α[

(1− s)l
k̂

]1−α − δ − gY , (C1e)

gA =
ς

1 + ψ

(sl)λ

â1−φ , (C1f)

β = (1− τK)
α

η
(â)1/ρ−α[

(1− s)l
k̂

]1−α − δ − gY , (C1g)

0 = β − [
(η − 1)α(1 + ψ)(1− s)

(1− α)ηs
− ψ]gA + gA. (C1h)

Based on eq. (C1h), we have:

s =

η−1
η

α
1−α(1+ψ)gA

β +
(

1 + η−1
η

α
1−α

)
(1+ψ)gA

. (C2)

From eqs. (B3) and (C1g), we can obtain

r − gY = β > 0. (C3)
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Equation eq. (C1g) can be rearranged as:

ŷ/k̂ = (â)1/ρ−α[
(1− s)l

k̂
]1−α =

η(β + δ + gY )

α(1− τK)
. (C4a)

Substituting eq. (C4a) into eq. (C1e) gives rise to:

ĉ

ŷ
= {(1− ζ)

η(β + δ + gY )

α(1− τK)
− δ − gY }

k̂

ŷ
= (1− ζ)− (δ + gY )

α(1− τK)

η(β + δ + gY )
. (C5a)

To ensure that the steady-state consumption-output ratio ĉ/ŷ is positive, we impose the

restriction (1− ζ)− (δ + gY ) α(1−τK)
η(β+δ+gY )

> 0 for all values of the time preference rate β. As a

consequence, limβ→0 ĉ/ŷ>0 implies:

(1− ζ)− α(1− τK)

η
> 0. (C5b)

From eq (C1f), we can derive:

â = [
ς

(1 + ψ)gA
]1/(1−φ)(sl)λ/(1−φ). (C6)

Based on eq. (B28), we can infer the following expression:

τL = (1− s)
ζ − α

η
τK

1− α , (C7a)

where

∂τL
∂τK

= −(1− s)
α
η

1− α < 0. (C7b)

Equipped with eqs. (B1), (B2), (B5), and LY = N(1− s)l, we can obtain:

l

1− lχ =
ŷ

ĉ

(1− τL)(1− α)

(1− s) . (C8)

Inserting eqs. (C5a) and (C7a) into eq. (C8) yields:

l =


1− χ

χ+ 1

[(1−ζ)−(δ+gY )
α(1−τK )
η(β+δ+gY )

]

(1−τL)(1−α)
(1−s)

; χ > 0

1 ; χ = 0

, (C9a)

where
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∂l

∂τK
=


αβ( 1−s

1−α )[1−ζ+ η−1
η

α(δ+gY )

β+(1+ψ)gA
](1−l)l

η(β+δ+gY )(1−τL)[1−ζ−(δ+gY )
α(1−τK )

η(β+δ+gY )
]
> 0 ; χ > 0

0 ; χ = 0

. (C9b)

Combining eqs. (C2), (C6), and (C9b) together, we can derive

â = [
ς

(1 + ψ)gA
]1/(1−φ)(sl)λ/(1−φ), (C10a)

where

∂â

∂τK
=

λ

(1− φ)
â
∂l

l∂τK
> 0. (C10b)

Based on eqs. (C4a), (C9b), (B12), and (B18), we have:

ŷ = â
1/ρ−α
1−α [

α(1− τK)

η(β + δ + gY )
]
α

1−α (1− s)l, (C11a)

where

∂ŷ

∂τK
= [σ

∂l

l∂τK
− α

(1− α)(1− τK)
]ŷ
>

<
0, σ ≡ 1 +

1/ρ− α
1− α

λ

1− φ. (C11b)

According to eqs. (C4a), (C5a), and (C11b), we obtain:

k̂ =
α(1− τK)

η(β + δ + gY )
ŷ, (C12a)

ĉ = [(1− ζ)− (δ + gY )
α(1− τK)

η(β + δ + gY )
]ŷ, (C12b)

Inserting eq. (C11a) into (C12a) and (C12b), we can derive the following comparative statics:

∂k̂

∂τK
=

α(1− τK)ŷ

η(β + δ + gY )
{σ ∂l

l∂τK
− 1

(1− α)(1− τK)
}>
<

0, (C12c)

∂ĉ

∂τK
= { α(δ + gY )

η(β + δ + gY )
+ [(1− ζ)

− α(1− τK)(δ + gY )

η(β + δ + gY )
][σ

∂l

l∂τK
− α

(1− α)(1− τK)
]}ŷ>

<
0.

(C12d)
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