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Abstract

This study explores the effects of minimum wage on automation and innovation
in a Schumpeterian growth model. We find that raising the minimum wage decreases
the employment of low-skill workers and has ambiguous effects on innovation and au-
tomation. Specifically, if the elasticity of substitution between low-skill workers and
high-skill workers in production is less (greater) than unity, then raising the minimum
wage leads to an increase (a decrease) in automation and innovation. We also cali-
brate the model to aggregate data to quantify the effects of minimum wage on the
macroeconomy.
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1 Introduction

Does raising the minimum wage provide incentives for firms to allocate resources to inno-
vation and the automation of the production process? Or does the decrease in low-skill
production labor as a result of raising the minimum wage lead to a reallocation of high-skill
labor from innovation and automation to the production of goods and services? We find that
both scenarios are possible. Which scenario occurs crucially depends on a structural para-
meter that determines the elasticity of substitution between low-skill workers and high-skill
workers in production.
Specifically, we consider a Schumpeterian growth model in which the production of goods

requires both low-skill workers and high-skill workers whereas the automation process and the
innovation process require only high-skill workers. Within this growth-theoretic framework,
we find that raising the minimum wage decreases the employment of low-skill workers and
has ambiguous effects on automation and innovation. Specifically, the effects of minimum
wage on automation and innovation depend on the elasticity of substitution between low-skill
workers and high-skill workers in production. If this elasticity of substitution is less (greater)
than unity, then raising the minimum wage leads to an increase (a decrease) in automation
and innovation.
The intuition of the above results can be explained as follows. Because the minimum

wage is binding in the low-skill labor market but not in the high-skill labor market, raising
the minimum wage reduces low-skill employment but does not affect high-skill employment.
The decrease in low-skill production workers leads to a decrease (an increase) in high-skill
production workers if the two types of workers are gross complements (substitutes) in which
case the amount of high-skill workers for automation and innovation increases (decreases).
Finally, we calibrate the model to aggregate data in the US economy to simulate the quanti-
tative effects of minimum wage on unemployment, capital intensity, automation, innovation,
economic growth and social welfare.
This study relates to the literature on innovation and economic growth. The semi-

nal study by Romer (1990) develops the first R&D-based growth model in which the cre-
ation of new products drives economic growth. Then, subsequent studies by Aghion and
Howitt (1992), Grossman and Helpman (1991) and Segerstrom et al. (1990) develop the
Schumpeterian growth model in which the quality improvement of products drives economic
growth. In this literature, some studies, such as Askenazy (2003), Meckl (2004), Agenor
and Lim (2018) and Chu, Kou and Wang (2019), introduce minimum wage into variants of
the R&D-based growth model to explore the relationship between unemployment and inno-
vation.1 This study differs from these previous studies by introducing automation into the
analysis and analyzing the relationship between minimum wage and automation. If we set
aside automation in the model, then our result relates to previous studies on minimum wage
and innovation by showing that the elasticity of substitution between low-skill workers and
high-skill workers in production determines the effect of minimum wage on innovation.
This study also relates to the literature on automation and economic growth.2 The

1There are other approaches of incorporating unemployment into the R&D-based growth model; see
Mortensen and Pissarides (1998) for search frictions, Parello (2010) for effi ciency wage, Peretto (2011) for
wage bargaining, and Ji et al. (2016) and Chu et al. (2016, 2018) for trade unions.

2See Aghion et al. (2017) for a comprehensive discussion of this literature.
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seminal study in this literature is Zeira (1998), who develops a growth model with capital-
labor substitution. Subsequent studies by Zeira (2006), Peretto and Seater (2013), Aghion
et al. (2017), Acemoglu and Restrepo (2018) and Hemous and Olson (2018) introduce
this capital-labor substitution into variants of the R&D-based growth model to explore the
relationship between automation and innovation.3 This study complements these interesting
studies by introducing minimumwage into the Schumpeterian growth model with automation
in Chu, Cozzi, Furukawa and Liao (2019) to explore the relationship between unemployment
and automation. Prettner and Strulik (2019) develop a variety-expanding R&D-based growth
model with unemployment driven by fair wage as in Akerlof and Yellen (1990) to analyze the
effect of automation on unemployment. Instead, we focus on the effect of minimum wage on
the relationship between unemployment and automation, which turns out to be ambiguous
and depends on the elasticity of substitution between low-skill workers and high-skill workers
in production.
The rest of this study is organized as follows. Section 2 presents the model. Section 3

explores the effects of minimum wage. Section 4 concludes.

2 A Schumpeterian growth model with automation and
minimum wage

The Schumpeterian growth model originates from Aghion and Howitt (1992). Chu, Cozzi,
Furukawa and Liao (2019) incorporate capital-labor substitution as in Zeira (1998) into
the Schumpeterian growth model with an automation-innovation cycle. We generalize their
production function to allow for a non-unitary elasticity of substitution between low-skill
workers and high-skill workers in production and introduce minimum wage into the model
to explore its effects on unemployment, automation and innovation.

2.1 Household

The utility function of the representative household is given by

U =

∫ ∞
0

e−ρt ln ctdt, (1)

where ct is the household’s consumption of final good (numeraire) and the parameter ρ > 0
determines the rate of subjective discounting. The household maximizes (1) subject to the
following asset-accumulation equation:

ȧt + k̇t = rtat + (Rt − δ)kt + wh,tH + wl,tlt + bt (L− lt)− τ t − ct. (2)

at is the value of assets owned by the household. rt is the real interest rate. kt is the amount
of physical capital owned by the household. Rt − δ is the rental price of capital net of
depreciation. The household has H + L members. Each of H members supplies one unit of

3See Chu, Cozzi, Furukawa and Liao (2019) for a discussion of these studies.
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high-skill labor and earns the high-skill wage rate wh,t, which is above the minimum wage and
determined as an equilibrium outcome in the high-skill labor market. Each of L members
supplies one unit of low-skill labor. Employed low-skilled workers lt earn the low-skill wage
rate wl,t, which is determined by the minimum wage set by the government. Unemployed
low-skill workers L − lt receive an unemployment benefit bt < wl,t. The household pays a
lump-sum tax τ t to the government. Dynamic optimization yields the Euler equation as

ċt
ct

= rt − ρ. (3)

Also, the no-arbitrage condition rt = Rt − δ holds.

2.2 Final good

Competitive firms produce final good yt using the following Cobb-Douglas aggregator over
a unit continuum of differentiated intermediate goods:

yt = exp

(∫ 1

0

lnxt(i)di

)
. (4)

xt(i) denotes intermediate good i ∈ [0, 1]. Profit maximization yields the conditional demand
function for xt(i) as

xt(i) =
yt
pt(i)

, (5)

where pt(i) is the price of xt(i).

2.3 Unautomated intermediate goods

There is a unit continuum of industries i ∈ [0, 1] that produce differentiated intermediate
goods. If an industry is not automated, then the production process uses low-skill labor lt(i)
and high-skill labor hx,t(i). The production function is given by

xt(i) = znt(i)
{

(1− β) [lt(i)]
ε−1
ε + β [hx,t(i)]

ε−1
ε

} ε
ε−1
, (6)

where the parameter ε ∈ (0,∞) is the elasticity of substitution between lt(i) and hx,t(i).
From cost minimization, the conditional demand functions for lt(i) and hx,t(i) are given by

wl,t =
(1− β)ξt(i)z

nt(i)

[lt(i)]
1
ε

{
(1− β) [lt(i)]

ε−1
ε + β [hx,t(i)]

ε−1
ε

} 1
ε−1
, (7)

wh,t =
βξt(i)z

nt(i)

[hx,t(i)]
1
ε

{
(1− β) [lt(i)]

ε−1
ε + β [hx,t(i)]

ε−1
ε

} 1
ε−1
, (8)

where ξt is the Lagrange multiplier from the cost minimization problem. Using (7) and
(8), we obtain lt(i)/hx,t (i) = {[β/ (1− β)] (wl,t/wh,t)}−ε. We substitute this relative labor
demand function into (6) to derive
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lt(i) =
xt(i)

znt(i)

(
wl,t

1− β
1

ψt

)−ε
, (9)

hx,t(i) =
xt(i)

znt(i)

(
wh,t
β

1

ψt

)−ε
, (10)

where we have defined the following transformed variable:

ψt ≡
[

(1− β)

(
wl,t

1− β

)1−ε

+ β

(
wh,t
β

)1−ε
] 1
1−ε

.

Using (9) and (10), we find that the marginal cost of production for the leader in an
unautomated industry i is given by ψt/z

nt(i). Aghion and Howitt (1992) and Grossman
and Helpman (1991) assume that the markup ratio is given by the quality step size, due to
limit pricing between current and previous quality leaders. Here we follow Howitt (1999)
and Dinopoulos and Segerstrom (2010) to assume that previous quality leaders exit the
market and need to pay a re-entry cost. In this case, the unconstrained profit-maximizing
monopolistic price would be infinite, so we consider price regulation as in Evans et al. (2003)
to impose a policy constraint on the markup ratio such that

pt(i) ≤ µ
ψt
znt(i)

. (11)

To maximize profit, the industry leader chooses pt(i) = µψt/z
nt(i). In this case, the wage

payment in an unautomated industry is

wl,tlt(i) + wh,thx,t(i) =
1

µ
pt(i)xt(i) =

1

µ
yt, (12)

and the amount of monopolistic profit in an unautomated industry is

πlt(i) = pt(i)xt(i)− [wl,tlt(i) + wh,thx,t(i)] =
µ− 1

µ
yt. (13)

2.4 Automated intermediate goods

If an industry is automated, then production uses capital as in Zeira (1998). The production
function is

xt(i) =
A

Zt
znt(i)kt(i), (14)

where A > 0 is a relative productivity parameter and Zt captures an erosion effect of new
technologies that reduce the adaptability of existing physical capital. Given the produc-
tivity level znt(i), the marginal cost function of the leader in an automated industry i is
ZtRt/[Az

nt(i)]. Due to price regulation, the monopolistic price pt(i) is once again a markup
µ over the marginal cost ZtRt/[Az

nt(i)] such that

pt(i) = µ
ZtRt

Aznt(i)
. (15)
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The capital rental payment in an automated industry is

Rtkt(i) =
1

µ
pt(i)xt(i) =

1

µ
yt, (16)

and the amount of monopolistic profit in an automated industry is

πkt (i) = pt(i)xt(i)−Rtkt(i) =
µ− 1

µ
yt. (17)

2.5 Automation-innovation cycle

This section derives the equilibrium condition that supports an automation-innovation cycle,
which can be explained as follows. When an industry becomes automated, it uses capital
as the factor input. In order for the automation to reduce the marginal cost of production,
we need the following condition to hold: ZtRt/A < ψt. Then, when an automated industry
becomes unautomated, it uses the two types of workers as factor inputs. In order for the
innovation to reduce the marginal cost of production, we need the following condition to hold:
ψt/z < ZtRt/A. Combining these two conditions yields ψt/z < ZtRt/A < ψt. In Lemma
1, we derive the steady-state equilibrium expression for this condition, in which gy ≡ ẏt/yt
denotes the steady-state growth rate of output.

Lemma 1 The steady-state equilibrium condition for the automation-innovation cycle is

1

z
<
[µ
A

(gy + ρ+ δ)
] 1
1−θ

< 1.

Proof. See Appendix A.

2.6 Innovation and automation

Equations (13) and (17) imply πlt(i) = πlt and π
k
t (i) = πkt . Therefore, we follow the standard

treatment to focus on the symmetric equilibrium in which vlt(i) = vlt and v
k
t (i) = vkt .

4 The
no-arbitrage condition that determines the value vlt of an unautomated invention is

rt =
πlt + v̇lt − (αt + λt)v

l
t

vlt
, (18)

which equates the interest rate to the rate of return on vlt given by the sum of profit πlt
and capital gain v̇lt minus expected capital loss (αt + λt)v

l
t, where αt is the arrival rate of

4See Cozzi et al. (2007) for a microfoundation of the symmetric equilibrium in the Schumpeterian model.
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automation and λt is the arrival rate of innovation. Similarly, the no-arbitrage condition
that determines the value vkt of an automation is

rt =
πkt + v̇kt − λtvkt

vkt
, (19)

which equates the interest rate to the rate of return on vkt given by the sum of profit π
k
t and

capital gain v̇kt minus expected capital loss λtv
k
t , where λt is the arrival rate of innovation.

The condition in Lemma 1 ensures that the previous automation becomes obsolete when the
next innovation arrives.
Competitive entrepreneurs perform innovation in industry i by employing high-skill labor

hr,t(i). The arrival rate of innovation in industry i is given by

λt(i) = ϕthr,t(i), (20)

where ϕt ≡ ϕhη−1
r,t . The aggregate arrival rate of innovation is λt = ϕhηr,t, where hr,t denotes

aggregate R&D labor, and the parameter η ∈ (0, 1) captures the intratemporal duplica-
tion externality in Jones and Williams (2000).5 In a symmetric equilibrium, the free-entry
condition of R&D becomes

λtv
l
t = wh,thr,t ⇔ ϕvlt = wh,th

1−η
r,t . (21)

Competitive entrepreneurs also perform automation in industry i by employing high-skill
labor ha,t(i). The arrival rate of automation in industry i is given by

αt(i) = φtha,t(i), (22)

where φt ≡ φ(1− θt)hη−1
a,t and θt is the endogenous share of automated industries at time t.

As in Chu, Cozzi, Furukawa and Liao (2019), the term 1 − θt in φt captures an increasing
diffi culty effect of automation under which more industries that are already automated make
the next automation more diffi cult.6 The aggregate arrival rate of automation is αt = φhηa,t,
where ha,t denotes aggregate automation labor and we have used the condition that ha,t(i) =
ha,t/(1− θt). In a symmetric equilibrium, the free-entry condition of automation becomes

αtv
k
t = wh,tha,t/(1− θt)⇔ φ(1− θt)vkt = wh,th

1−η
a,t . (23)

2.7 Government

We assume that the government sets the minimum wage as a certain percentage γ of average
wage income, where γ > 0 is the minimum-wage policy instrument. We will show that the
minimum wage wl,t is binding in the low-skill labor market if γ is suffi ciently large. The
government collects a lump-sum tax τ t to finance the unemployment benefit subject to the
balanced-budget condition given by

τ t = bt (L− lt) . (24)

5Davidson and Segerstrom (1998) show that constant returns to scale in multiple R&D actitivities can lead
to equilibrium instability and perverse comparative statics. Our model features innovation and automation,
so the decreasing returns to scale in innovation and automation helps to ensure equilibrium stability.

6Otherwise, ha,t(i) = ha,t/(1− θt) would become unbounded as θt → 1.
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2.8 Aggregation

Aggregate technology Zt is defined as

Zt ≡ exp

(∫ 1

0

nt(i)di ln z

)
= exp

(∫ t

0

λωdω ln z

)
. (25)

Differentiating the log of Zt in (25) with respect to time yields the growth rate of technology
given by

gz,t ≡
Żt
Zt

= λt ln z. (26)

Substituting (6) and (14) into (4) yields the following aggregate production function:

ln yt =

∫ θt

0

ln

[
A

Zt
znt(i)kt (i)

]
di+

∫ 1

θt

ln

{
znt(i)

[
(1− β) [lt(i)]

ε−1
ε + β [hx,t(i)]

ε−1
ε

] ε
ε−1
}
di

=⇒ yt =

(
Akt
θt

)θt
Zt

[
(1− β) l

ε−1
ε

t + βh
ε−1
ε

x,t

] ε
ε−1

1− θt


1−θt

, (27)

where we have used kt(i) = kt/θt, lt(i) = lt/ (1− θt) and hx,t(i) = hx,t/ (1− θt). The
share θt of automated industries determines the degree of capital intensity in the aggregate
production function. The evolution of θt is determined by

θ̇t = αt(1− θt)− λtθt, (28)

where αt = φhηa,t and λt = ϕhηr,t are respectively the arrival rates of automation and innova-
tion. Using (2), one can derive the familiar law of motion for capital as follows:7

k̇t = yt − ct − δkt. (29)

From (9), (10) and (16), the capital and labor shares of income are respectively

Rtkt =
θt
µ
yt, (30)

wl,tl =
(1− θt) yt

µ
(1− β)ε

(
wl,t
ψt

)1−ε

, (31)

wh,thx,t =
(1− θt) yt

µ
βε
(
wh,t
ψt

)1−ε

. (32)

7In Appendix B, we provide the detailed derivations.
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2.9 Decentralized equilibrium

The equilibrium is a time path of allocations {at, kt, ct, yt, xt(i), lt(i), kt(i), hx,t(i), hr,t(i), ha,t(i)}
and a time path of prices {rt, Rt, wl,t, wh,t, pt(i), v

l
t(i), v

k
t (i)} such that the following conditions

hold in each instance:

• the household maximizes utility taking {rt, Rt, wl,t, wh,t} as given;

• competitive final-good firms produce yt to maximize profit taking pt(i) as given;

• each monopolistic intermediate-good firm i produces xt(i) and chooses {lt(i), hx,t(i), kt(i), pt(i)}
to maximize profit taking {wl,t, wh,t, Rt} as given;

• competitive entrepreneurs choose {hr,t(i), ha,t(i)} to maximize expected profit taking
{wh,t, vlt(i), vkt (i)} as given;

• the market-clearing condition for final good holds such that yt = ct + k̇t + δkt;

• the market-clearing condition for capital holds such that
∫ θt

0
kt(i)di = kt;

• the market-clearing condition for high-skill labor holds such that
∫ 1

0
hr,t(i)di+

∫ 1

θt
ha,t(i)di+∫ 1

θt
hx,t(i)di = hr,t + ha,t + hx,t = H;

• the minimum wage in the low-skill labor market implies
∫ 1

θt
lt(i)di = lt < L;

• the value of inventions is equal to the value of the household’s assets such that
∫ θt

0
vkt (i)di+∫ 1

θt
vlt(i)di = at; and

• the government balances the fiscal budget.

2.10 Steady-state equilibrium allocation

From (13) and (17), the amount of monopolistic profit in both automated and unautomated
industries is

πlt = πkt =
µ− 1

µ
yt. (33)

The balanced-growth values of an innovation and an automation are respectively

vlt =
πlt

ρ+ α + λ
=

πlt
ρ+ φhηa + ϕhηr

, (34)

vkt =
πkt
ρ+ λ

=
πkt

ρ+ ϕhηr
. (35)

Substituting (34) and (35) into the free-entry conditions in (21) and (23) yields

ϕh1−η
a

φ(1− θ)h1−η
r

=
ρ+ φhηa + ϕhηr

ρ+ ϕhηr
,
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which can be reexpressed as

ϕ

φ
+

(
ha
hr

)η
=

(
hr
ha

)1−η

+

(
hr
ha

)1−2η
φ

ϕ+ ρ/hηr
. (36)

This equation shows that there is a positive relationship between ha and hr if η ≤ 1/2; see
Figure 1 for an illustration.
We make use of (32) to obtain

wh,thx,t =
(1− θt) yt

µ

βε (wh,t/wl,t)
1−ε

(1− β)ε + βε (wh,t/wl,t)
1−ε . (37)

Based on (31) and (32), we can derive wh,t/wl,t = [β/ (1− β)] (lt/hx,t)
1/ε. Substituting this

condition into (37) and using (23), (33) and (35), we obtain

φ (µ− 1) =
β (ρ+ ϕhηr)h

1−η
a

(1− β) l
ε−1
ε (H − ha − hr)

1
ε + β (H − ha − hr)

, (38)

where we have used the market-clearing condition for high-skill labor hx + ha + hr = H.
Equation (38) shows that for any given amount of low-skill labor l, there is a negative
relationship between ha and hr.
Low-skill labor l in (38) is still an endogenous variable. To solve for l, we use the following

rule that sets the minimum wage as a percentage γ of the labor share of output per capita:

wl,t = γ
1− θt
µ

yt
H + L

, (39)

where (1− θt)/µ is the labor income share. Substituting (5), (6) and ξt(i) = pt(i)/µ into (7)
and then the resulting expression into (39) yields

l = min

{
H + L

γ

(1− β) l
ε−1
ε

(1− β) l
ε−1
ε + β (hx)

ε−1
ε

, L

}
. (40)

In summary, (36), (38), (40) and hx + ha + hr = H together solve for the steady-state
equilibrium allocation {hr, ha, hx, l}. We can substitute hx = H−ha−hr into (40) to obtain
the following implicit function:

l(hx) = l(H − ha − hr). (41)

Then, we substitute (41) into (38) to obtain

φ (µ− 1) =
β (ρ+ ϕhηr)h

1−η
a

(1− β) [l(H − ha − hr)]
ε−1
ε (H − ha − hr)

1
ε + β (H − ha − hr)

, (42)

which continues to feature a negative relationship between ha and hr as shown in the proof
of Lemma 2. Therefore, the equilibrium allocation {hr, ha} is unique; see Figure 1 for an
illustration. Finally, we obtain {hx, l} using hx = H− ha − hr and (40).
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Lemma 2 The steady-state equilibrium allocation {hr, ha, hx, l} is unique.

Proof. See Appendix A.

Figure 1

3 How minimum wage affects R&D and automation

In the proof of Proposition 1, we show that if γ is suffi ciently large, then the minimum
wage is binding in the low-skill labor market and causes unemployment such that l < L.
Intuitively, a binding minimum wage gives rise to an excess supply of low-skill workers and
causes their employment level to be below full employment. Then, any further increase in
the minimum-wage policy instrument γ reduces the level of low-skill employment such that

dl

dγ
< 0. (43)

Intuitively, raising the minimum wage reduces the demand for low-skill workers l and their
employment level. Given that the employment of labor-skill labor is already below full em-
ployment (i.e., l < L), any increase in the minimumwage γ would increase the unemployment
rate u that is given by

u(γ
+

) =
1

H + L
[L− l(γ

−
)]. (44)

As for the effects of the minimum wage on the allocation of high-skill workers, we need to
consider two cases for the elasticity of substitution between low-skill workers and high-skill
workers in production. If ε > 1, then the right-hand side (RHS) of (38) is decreasing in l. In
this case, an increase in l must be accompanied by an increase in ha and hr and a decrease in
hx; see Figure 2 for an illustration. Conversely, if ε < 1, then the RHS of (38) is increasing
in l. In this case, an increase in l must be accompanied by a decrease in ha and hr and an
increase in hx; see Figure 2 for an illustration. We summarize the above results as follows:

11



ha = ha (l) ; ha,l ≡
dha
dl

≷ 0 if ε ≷ 1,

hr = hr (l) ; hr,l ≡
dhr
dl

≷ 0 if ε ≷ 1,

hx = hx (l) ; hx,l ≡
dhx
dl

≶ 0 if ε ≷ 1.

Figure 2

Therefore, if the elasticity of substitution between low-skill workers and high-skill workers
in production is less than unity (i.e., ε < 1), then we obtain

dhx
dl︸︷︷︸
+

dl

dγ︸︷︷︸
−

< 0,
dha
dl︸︷︷︸
−

dl

dγ︸︷︷︸
−

> 0,
dhr
dl︸︷︷︸
−

dl

dγ︸︷︷︸
−

> 0. (45)

In other words, the decrease in low-skill production workers l (due to the higher minimum
wage) leads to a decrease in high-skill production workers hx given the gross complemen-
tarity between the two types of workers. As a result, the amount of high-skill workers for
automation ha and R&D hr increases.
If the elasticity of substitution between low-skill workers and high-skill workers in pro-

duction is greater than unity (i.e., ε > 1), then we obtain

dhx
dl︸︷︷︸
−

dl

dγ︸︷︷︸
−

> 0,
dha
dl︸︷︷︸
+

dl

dγ︸︷︷︸
−

< 0,
dhr
dl︸︷︷︸
+

dl

dγ︸︷︷︸
−

< 0. (46)

In this case, the opposite effects prevail that the decrease in low-skill production workers l
(due to the higher minimum wage) leads to an increase in high-skill production workers hx
given the gross substitutability between the two types of workers. As a result, the amount
of high-skill workers for automation ha and R&D hr decreases.
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Finally, we explore the effects of minimum wage on economic growth. The steady-state
equilibrium growth rate of aggregate technology Zt is

gz(γ) = λ(γ) ln z = [hr(γ)]ηϕ ln z. (47)

Given that yt and kt grow at the same rate on the balanced growth path, the aggregate
production function in (27) implies that the steady-state equilibrium growth rate of output
yt is also

gy(γ) = gz(γ) = [hr(γ)]ηϕ ln z. (48)

Therefore, whether the equilibrium growth rate is increasing or decreasing in the minimum
wage also depends on the elasticity of substitution between low-skill workers and high-skill
workers in production. We summarize all the above results in Proposition 1.

Proposition 1 An increase in the minimum wage has the following effects: (a) a negative
effect on the employment of low-skill workers; (b) a positive effect on the unemployment rate;
(c) a negative effect on high-skill production workers and a positive effect on automation,
R&D and economic growth if the elasticity of substitution between low-skill workers and
high-skill workers in production is less than unity; and (d) a positive effect on high-skill
production workers and a negative effect on automation, R&D and economic growth if the
elasticity of substitution between low-skill workers and high-skill workers in production is
greater than unity.

Proof. See Appendix A.

3.1 Quantitative analysis

In this section, we calibrate the model to aggregate data of the US economy in order to
provide a quantitative illustration on the effects of the minimum wage. The model could
feature scale effects as in Aghion and Howitt (1992). We sidestep this issue by normalizing
high-skill labor H to unity. Then, the model features the following structural parameters
{ε, ρ, µ, η, δ, β, z, ϕ, φ,A, L} and a policy variable γ. We determine their parameter values as
follows.
We consider two values for the substitution elasticity ε ∈ {0.5, 2.5} that corresponds to

the range of empirical estimates reported in Katz and Autor (1999).8 We set the discount
rate ρ to 0.05 and the markup ratio µ to 1.05. We follow Jones and Williams (2000) to set
the intratemporal duplication externality parameter η to 0.5. As for the capital depreciation
rate δ, we calibrate its value using an investment-capital ratio of 0.0768 in the US. We
set the distribution parameter β between high-skill and low-skill workers to 0.634, which
corresponds to a value of 0.366 for the intensity of low-skill labor in Ben-Gad (2008). We
calibrate the quality step size z using a long-run technology growth rate of 0.0125 in the US.
We calibrate the R&D productivity parameter ϕ using an innovation arrival rate of one-third

8The substitution elasticity ε is more likely to be greater than unity according to recent estimates, see
for example Ben-Gad (2008) and Acemoglu and Autor (2011); however, ε < 1 is still possible empirically.
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as in Acemoglu and Akcigit (2012). We calibrate the automation productivity parameter φ
using a labor-income share of 0.60 in the US. For the parameter A, we choose a value that
satisfies the condition for the automation-innovation cycle in Lemma 1. We calibrate the
low-skill members L using the unemployment rate of 0.06 in the US. Finally, we calibrate
the value of γ using the skill premium wh,t/wl,t = 1.974 in 2008 in the US; see Acemoglu
and Autor (2011). We summarize the parameter values in Table 1.

Table 1: Calibration
ε ρ µ η δ β z ϕ φ A L γ

0.500 0.050 1.050 0.500 0.064 0.634 1.039 1.311 1.030 0.136 1.087 0.761
2.500 0.050 1.050 0.500 0.064 0.634 1.039 1.254 0.985 0.136 1.379 0.794

In the rest of this section, we simulate the effects of the minimum wage γ on the output
growth rate gy, the unemployment rate u, labor allocations {hr, ha, hx, l}, the share θ of
automated industries and the steady-state level of social welfare U .9 Figure 3 simulates the
effects of the minimum wage γ when the elasticity of substitution between low-skill workers
and high-skill workers in production is 0.5 (i.e., ε < 1). In this case, Figure 3a and 3b
show that raising the minimum wage γ has a positive effect on the growth rate of output
and the unemployment rate. The increase in the unemployment rate is due to the decrease
in low-skill production labor as shown in Figure 3f. As for the positive effect on economic
growth, it is due to the positive effect of γ on innovation labor in Figure 3c, which in turn
is due to the negative effect of γ on high-skill production labor in Figure 3e. Figure 3d
shows that raising γ also has a positive effect on automation labor, which in turn leads to
the positive effect on the share of automated industries in Figure 3g. Finally, Figure 3h
shows that raising the minimum wage γ has a negative effect on social welfare,10 which is
mainly driven by the decrease in the level of output as a result of the reduction in low-skill
production labor despite the increase in the growth rate.

Figure 3a: Effect of γ on gy (ε = 0.5) Figure 3b: Effect of γ on u (ε = 0.5)

9See Appendix C for the derivation of the steady-state level of social welfare.
10The welfare changes are expressed in the usual equivalent variation in consumption.
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Figure 3c: Effect of γ on hr (ε = 0.5) Figure 3d: Effect of γ on ha (ε = 0.5)

Figure 3e: Effect of γ on hx (ε = 0.5) Figure 3f: Effect of γ on l (ε = 0.5)

Figure 3g: Effect of γ on θ (ε = 0.5) Figure 3h: Effect of γ on U (ε = 0.5)
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Figure 4 simulates the effects of the minimum wage γ when the elasticity of substitution
between low-skill workers and high-skill workers in production is 2.5 (i.e., ε > 1). In this
case, Figure 4a and 4b show that raising the minimum wage γ continues to have a positive
effect on the unemployment rate but now a negative effect on the growth rate of output. As
before, the increase in the unemployment rate is due to the decrease in low-skill production
labor as shown in Figure 4f. As for the negative effect on economic growth, it is due to the
negative effect of γ on innovation labor in Figure 4c, which in turn is due to the now positive
effect of γ on high-skill production labor in Figure 4e. Figure 4d shows that raising γ has a
negative effect on automation labor, which in turn leads to the negative effect on the share of
automated industries in Figure 4g. Finally, Figure 4h shows that raising the minimum wage
γ continues to have a negative effect on social welfare, which is now driven by the decrease
in the growth rate of output in addition to the decrease in the level of output (as a result of
the reduction in low-skill production labor).

Figure 4a: Effect of γ on gy (ε = 2.5) Figure 4b: Effect of γ on u (ε = 2.5)

Figure 4c: Effect of γ on hr (ε = 2.5) Figure 4d: Effect of γ on ha (ε = 2.5)
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Figure 4e: Effect of γ on hx (ε = 2.5) Figure 4f: Effect of γ on l (ε = 2.5)

Figure 4g: Effect of γ on θ (ε = 2.5) Figure 4h: Effect of γ on U (ε = 2.5)

4 Conclusion

In this study, we have explored the effects of minimum wage in a Schumpeterian growth
model with automation. We find that raising the minimum wage has ambiguous effects on
innovation and automation, which crucially depend on the elasticity of substitution between
low-skill workers and high-skill workers in the production process. In an economy in which the
two types of workers are gross complements (substitutes), raising the minimum wage would
have a positive (negative) effect on innovation and automation. Therefore, the elasticity of
substitution between low-skill and high-skill workers is an important factor that empirical
studies should take into account when evaluating the effects of minimum wage on innovation
and automation.
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Appendix A: Proofs

Proof of Lemma 1. Using the no-arbitrage condition r = R − δ and the Euler equation
r = gy + ρ, we can reexpress the equilibrium condition that supports a cycle of automation
and innovation as

1

z
<
Z

A

(
gy + ρ+ δ

ψ

)
< 1. (A1)

We substitute (5), (6), (11) and (27) into (A1) to derive

1

z
<

(
1

A

) 1
1−θ
(
θy

k

) θ
1−θ

[µ (gy + ρ+ δ)] < 1. (A2)

From capital income Rk = θy/µ, the steady-state capital-output ratio is given by

k

y
=

θ

µR
=

θ

µ (r + δ)
=

θ

µ (gy + ρ+ δ)
. (A3)

Substituting (A3) into (A2) yields the steady-state equilibrium condition for the automation-
innovation cycle.

Proof of Lemma 2. From (36), it is easy to verify that there is a positive relationship
between ha and hr if η ≤ 1/2. Moreover, we reexpress (41) as

l (hx) = l (H − ha − hr) , (A4)

where

lhx ≡
dl

dhx
= − [β (ε− 1) /ε] [(H − ha − hr) l]

−1
ε

(1− β) l
−2
ε + (β/ε) (H − ha − hr)

ε−1
ε l

−(1+ε)
ε

. (A5)

Equation (A5) shows that l is monotonically decreasing (increasing) in hx if ε > 1(< 1). We
make use of (42) and (A5) to derive

dha
dhr

= −

[
(1− β) (H − ha − hr)

1
ε l

ε−1
ε + β (H − ha − hr)

]
ηϕhη−1

r + Φ (ρ+ ϕhηr)

(ρ+ ϕhηr)
{[

(1− β) (H − ha − hr)
1
ε l

ε−1
ε + β (H − ha − hr)

]
(1− η) /ha + Φ

} ,
(A6)

where

Φ ≡ [(1− β) /ε] (H − ha − hr)
1−ε
ε l

ε−1
ε ∆

(1− β) l
−2
ε + (β/ε) (H − ha − hr)

ε−1
ε l

−(1+ε)
ε

+ β, (A7)

∆ ≡ (1− β) l
−2
ε +

β

ε
(H − ha − hr)

ε−1
ε l

−(1+ε)
ε

[
1− (ε− 1)2] . (A8)

Equations (A7) and (A8) show Φ > 0 and ∆ ≥ 0 if ε ≤ 2. Therefore, (42) features a
negative relationship between ha and hr if ε ≤ 2. Based on (36) and (42), we obtain that
the equilibrium allocation {hr, ha} is unique. From (A5), we know that l is monotonically
decreasing in hx or increasing in hx. Using this condition and hx = H − ha − hr, we obtain
that the equilibrium allocation {hx, l} is also unique.
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Proof of Proposition 1. We make use of (36), (38) and hx = H − ha − hr to derive

ha,l ≡
dha
dl

=

(
Ω

Θ

)
(ε− 1) (1− β)

ε (l/hx)
1/ε

, (A9)

hr,l ≡
dhr
dl

=

(
Π

Θ

)
(ε− 1) (1− β)

ε (l/hx)
1/ε

, (A10)

hx,l ≡
dhx
dl

= −
(
dha
dl

+
dhr
dl

)
, (A11)

where

Ω ≡
[
η

hr
+

1− η
ha

+
1− 2η

ha

(
ha
hr

)η
φhηr

ϕhηr + ρ
+

(
hr
ha

)1−η
ρηφhη−1

r

(ϕhηr + ρ)2

]
> 0,

Π ≡
(
hr
ha

)[
η

hr
+

1− η
ha

+
1− 2η

ha

(
ha
hr

)η
φhηr

ϕhηr + ρ

]
> 0,

Θ ≡
[
(1− β)h

1
ε
x l

ε−1
ε +βhx

] [ηϕhη−1
r Π

ρ+ ϕhηr
+

(1− η) Ω

ha

]
+ (Π + Ω)

[
1− β
ε

(
hx
l

) 1−ε
ε

+ β

]
> 0.

It is helpful to note that we set η ≤ 1/2 and ε ≤ 2 so that the steady-state equilibrium
allocation {hr, ha, hx, l} is unique. Equations (A9) and (A10) show that both ha and hr are
increasing (decreasing) in l if ε > 1(< 1). Given this result, it is easy to verify that there
is a negative (positive) relationship between hx and l if ε > 1(< 1). Based on (40), we take
the differentials of l with respect to γ to obtain

dl

dγ
= −

[
(1− β) l

ε−1
ε + βh

ε−1
ε

x

]2

(1− β) (H + L)

(1− β) l
−2
ε + (β/ε)h

ε−1
ε

x l
−(1+ε)

ε [1 + (ε− 1) (l/hx)hx,l]︸ ︷︷ ︸
≡Λ


. (A12)

We substitute (A11) into Λ and then use the suffi cient conditions of the unique equilibrium
(i.e, η ≤ 1/2 and ε ≤ 2) to obtain

ΘΛ =
[
(1− β)h

1
ε
x l

ε−1
ε +βhx

] [ηϕhη−1
r Π

ρ+ ϕhηr
+

(1− η) Ω

ha

]
+(Π+Ω)

{
β+

1− β
ε

(
hx
l

) 1−ε
ε [

1− (ε− 1)2]} > 0.

As a result, (A12) shows that there is a negative relationship between l and γ. Given this
result, we make use of (44) to derive that there is a positive relationship between u and γ.
Combining (A12) and (A9)-(A11), we obtain that both ha and hr are decreasing (increasing)
in γ if ε > 1(ε < 1) and hx is increasing (decreasing) in γ if ε > 1(ε < 1). Finally, we use
(48) to obtain that g is decreasing (increasing) in γ if ε > 1(ε < 1).
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Appendix B: The capital-accumulation equation

Using (2) and τ t = bt (L− lt), we obtain

ȧt + k̇t = rtat + (Rt − δ)kt + wl,tlt + wh,tH − ct. (B1)

Given at = θtv
k
t + (1− θt) vlt, we derive ȧt = θtv̇

k
t +vkt θ̇t+ (1− θt) v̇lt−vltθ̇t. Substituting (28)

into this condition, we obtain

ȧt = θtv̇
k
t + vkt [αt(1− θt)− λtθt] + (1− θt) v̇lt − vlt [αt(1− θt)− λtθt] . (B2)

Substituting (B2) and at = θtv
k
t + (1− θt) vlt into (B1), we obtain

θtv̇
k
t + vkt [αt(1− θt)− λtθt] + (1− θt) v̇lt − vlt [αt(1− θt)− λtθt] + k̇t (B3)

= rt
[
θtv

k
t + (1− θt) vlt

]
+ (Rt − δ)kt + wl,tlt + wh,tH − ct.

Using (18) and (19) yields

k̇t = −αt (1− θt) vkt + θtπ
k
t + (1− θt) πlt (B4)

−λtvlt +Rtkt − δkt + wl,tlt + wh,tH − ct.

Moreover, we make use of (13), (17), (30), (31) and (32) to derive

k̇t = yt − ct − δkt − αt (1− θt) vkt − λtvlt + wh,tha,t + wh,thr,t. (B5)

Substituting (21) and (23) into (B5), we obtain

k̇t = yt − ct − δkt. (B6)
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Appendix C: The welfare function

The steady-state level of social welfare U can be expressed as

ρU = (ln c0) +
gy
ρ
. (C1)

The law of motion capital is k̇t = yt − ct − δkt. Using this condition, one can derive the
following steady-state consumption-output ratio:

c

y
= 1− (gy + δ)

k

y
. (C2)

Substituting (C2) into (C1) and using (27), the steady-state level of social welfare U can be
re-expressed as

ρU = ln

[
1− (gy + δ)

k

y

]
+θ lnA+θ ln

(
k

θ

)
+(1− θ) ln


[
(1− β) l

ε−1
ε + βh

ε−1
ε

x

] ε
ε−1

1− θ

+
gy
ρ
,

(C3)
where Z0 is normalized to unity. The steady-state capital-output ratio and the capital-
technology ratio are respectively

k

y
=

θ

Rµ
=

θ

µ (r + δ)
=

θ

µ (gy + ρ+ δ)
, (C4)

k

Z
=
θ
[
(1− β) l

ε−1
ε + βh

ε−1
ε

x

] ε
ε−1

A (1− θ)

(
A

θ

k

y

) 1
1−θ

. (C5)

Substituting (C4) and (C5) into (C3), we obtain

ρU = ln

[
1− (gy + δ)

k

y

]
+

(
θ

1− θ

)
ln

(
A

θ

k

y

)
+ ln


[
(1− β) l

ε−1
ε + βh

ε−1
ε

x

] ε
ε−1

1− θ

+
gy
ρ
,

(C6)
where we have used Z0 = 1.
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