
 

https://www.liverpool.ac.uk/management/people/economics/ 

© R. Bu, F. Jawadi, Y. Li 

 

 

 

 Working Paper in Economics 
  

# 20183 

  

October 2018 

 

 

 

 

 

A Multi-Factor Transformed Diffusion Model 
with Applications to VIX and VIX Futures 

 

 

Ruijun Bu 

Fredj Jawadi 

Yuyi Li 

  

 

 

  
 

https://www.liverpool.ac.uk/management/people/economics/
https://www.liverpool.ac.uk/management/people/economics/


A Multi-Factor Transformed Di¤usion Model with
Applications to VIX and VIX Futures

Ruijun Bu� Fredj Jawadiy Yuyi Liz

August 2018

Abstract

Transformed di¤usions (TDs) have become increasingly popular in �nancial modelling
for their model �exibility and tractability. While existing TD models are predominately
one-factor models, empirical evidence often prefers models with multiple factors. We pro-
pose a novel distribution-driven nonlinear multi-factor TD model with latent components.
Our model is a transformation of a underlying multivariate Ornstein Uhlenbeck (MVOU)
process, where the transformation function is endogenously speci�ed by a �exible parametric
stationary distribution of the observed variable. Computationally e¢ cient exact likelihood
inference can be implemented for our model using a modi�ed Kalman �lter algorithm and
the transformed a¢ ne structure also allows us to price derivatives in semi-closed form. We
compare the proposed multi-factor model with existing TD models for modelling VIX and
pricing VIX futures. Our results show that the proposed model outperforms all existing
TD models both in the sample and out of the sample consistently across all categories and
scenarios of our comparison.
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1. Introduction

Since the seminal work of Merton (1973), continuous-time di¤usion models have proved to be
extremely useful in �nancial and economic modelling. In particular, they have been frequently
applied to research in the dynamics of key economic variables such as short-term interest rates,
exchange rates, and more recently volatility indices (c.f. Chan et al. 1992, Bu, Cheng and Hadri
2016, 2017, Bu, Jawadi and Li 2017).
A parametric univariate or one-factor continuous-time di¤usion process, say fYt; t � 0g, is

usually described by the following Stochastic Di¤erential Equation (SDE):

dYt = �Y (y; ) dt+ �Y (Yt; ) dWt (1)

where �Y (y; ) and �
2
Y (y; ) are, respectively, the drift and di¤usion functions with parameter  

and fWt; t � 0g is a standard Brownian motion. Well known examples in �nance include Merton
(1973), Vasicek (1977), Cox et al. (1985), Du¢ e and Kan (1996), Aït-Sahalia (1996b), Conley
et al. (1997), Ahn and Gao (1999), Detemple and Osakwe (2000), and more recently Bu et al.
(2011), Eraker and Wang (2015), Bu, Jawadi and Li (2017), among others.
Maximum Likelihood (ML) is usually the preferred method of estimation. However, except

for a few special cases such as the Geometric Brownian Motion (GBM) (c.f. Black and Scholes
1973), the Ornstein Uhlenbeck (OU) process (c.f. Vasicek 1977) and the square-root or CIR
process (c.f. Cox et al. 1985), most continuous-time di¤usion models do not possess closed-
form transition densities. Nevertheless, nonlinearities beyond the assumptions of these models are
often documented in the literature (c.f. Aït-Sahalia 1996b, Stanton 1997, Bu et al. 2011, Eraker
and Wang 2015, and Bu, Cheng and Hadri 2017)1. Hence, one strand of literature focuses on
developing density approximation techniques for nonlinear di¤usions. Main examples include Lo
(1988), Pedersen (1995), Brandt and Santa-Clara (2002), Shoji and Ozaki (1998), Kessler (1997),
Elerian et al. (2001), and Aït-Sahalia (2002). Meanwhile, another strand of literature aims to �nd
a balance between model �exibility and tractability with no recourse to density approximations.
These studies advocate the use of the so-called transformed di¤usion (TD) models. TDs are usually
nonlinear transformations of tractable, typically a¢ ne, underlying di¤usions (UDs). Hence, TDs
are potentially �exible di¤usion models capable of capturing nonlinear features in the data while
at the same time possess some desirable analytical and statistical tractability inherited from the
more tractable UDs. Primary examples of TDs, among others, include Ahn and Gao (1999), Bu
et al. (2011), Goard and Mazur (2013), Forman and Sørensen (2014), Eraker and Wang (2015),
and most recently Bu, Jawadi and Li (2017), Bu et al. (2018).
Compared with the density approximation methods for nonlinear di¤usions, among which the

closed-form expansion method of Aït-Sahalia (2002) is by far the most widely used in applications,
the TD approach has several notable advantages. First, the theory of TDs is general enough to
accommodate nonlinear UDs. Thus, the class of TDs is broad enough to encompass all parametric
di¤usions. For example, Bu et al. (2018) consider a nonparametric transformation of the Nonlinear

1Pritsker (1998) and Chapman and Pearson (2000) argued that nonparametric kernel-based speci�cation tests
used by Aït-Sahalia (1996b) and Stanton (1997) tend to su¤er from severe size distortions. However, evidence from
parametric speci�cation tests often prefer nonlinear models. See for example Bu et al. (2011), Eraker and Wang
(2015), and Bu, Cheng and Hadri (2017).



Drift Constant Elasticity Variance (NLDCEV) model of Aït-Sahalia (1996b)2. Second, simple
transformations of a¢ ne models may actually perform better than popular general nonlinear
di¤usions. For example, Bu, Cheng and Hadri (2017) �nd that the transformed CIRmodel with the
CEV di¤usion function �ts the VIX data signi�cantly better than the NLDCEVmodel. Third, TDs
inherit many important statistical and dynamic properties from their UDs. Forman and Sørensen
(2014) show that these include stationarity, ergodicity, mixing, �rst passage time, and knowledge
about the transition densities. For general nonlinear di¤usions, however, these properties usually
need to be determined on a case-by-case basis3. Fourth, TDs are particularly attractive for �nancial
modelling if the UDs are a¢ ne. The a¢ ne class of models is by far the most widely adopted in asset
pricing (c.f. Dai and Singleton 2000) because of their exceptional tractabilities. For transformed
a¢ ne models, statistical inference (e.g. ML estimation and forecasting) and �nancial applications
(e.g. derivative pricing, copula modelling) are often tractable too (c.f. Bu et al. 2011, Eraker and
Wang 2015, Bu, Jawadi and Li 2017, Amengual and Xiu 2018). In contrast, �nancial modelling
with general nonlinear di¤usions can be signi�cantly more di¢ cult.
The issue of lack of tractability is most prominent for nonlinear multi-factor models with latent

components. Aït-Sahalia (2008) developed a density approximation method for multivariate or
multi-factor di¤usions, which was then applied by Aït-Sahalia and Kimmel (2007) for estimating
stochastic volatility models. Since the volatility process is not directly observed, model estimation
requires the use of nonlinear �ltering for general latent-factor di¤usions, which can be computa-
tionally costly. They therefore used a proxy extracted from option data to replace the unobserved
volatility4. However, in many other cases proxies are not always available. For instance, for the
stochastic central tendency model of Mencía and Sentana (2013), no obvious proxy is available
for the latent central tendency variable. Thus, most of the time, �ltering directly applied to
the observed series is inevitable. Therefore, there is a clear need for developing models that can
circumvent these di¢ culties.
The most important property of TD models is their tractable transition densities, which fa-

cilitate statistical inferences and applications substantially. Ahn and Gao (1999) considered a
transformed CIR model for modelling short-term interest rates and closed-form pricing of bonds.
Detemple and Osakwe (2000) used a transformed OU model for modelling volatility index and
closed-form pricing of VIX futures (VXFs) and options. Bu et al. (2011) also used TDs for mod-
elling UK and US interest rates. Forman and Sørensen (2014) also considered a transformed OU
model but study molecular dynamics data. Eraker and Wang (2015) considered a transformed
CIR model with a cubic drift function for pricing VXFs. Most recently, Bu, Jawadi and Li (2017)
proposed the distribution-driven transformed OU and CIR models with stationary distributions
speci�ed as the Skewed Student-t (SKST) distribution of Hansen (1994) for modelling VIX and

2The NLDCEV model is written as

dXt =
�
a�1X

�1
t + a0Xt + a1Xt + a2X

2
t

�
dt+ �X


t dWt

and is one of the most widely used general nonlinear di¤usion models in �nance. See for example Aït-Sahalia
(1996b), Conley et al. (1997), Choi (2009).

3See Karlin and Taylor (1981) for more details.
4Estimation methods such as MCMC and particle �ltering are computationally expensive and usually require

the discretization of the models, which may lead to discretization errors. In addition, extracted proxies usually
contain errors. The e¤ect of these errors on parameter estimation can be complicated and is usually not properly
investigated.



VXFs.
Although TDs have proved to be quite usefully in empirical applications by achieving a suitable

balance between model �exibility and tractability, the literature on TDs has so far mainly focused
on one-factor models, which inevitably su¤er from some degrees of restrictions. For modelling the
term structure of interest rates, for example, empirical evidence often �nds one-factor models not
�tting short term and long term yields satisfactorily at the same time. In addition, Bu et al. (2011)
and Bu, Cheng and Hadri (2017) both �nd that TDs with time-varying transformations �t their
data signi�cantly better than TDs with constant transformations. Moreover, Forman and Sørensen
(2014) �nd their distribution-driven TD model does not �t the autocorrelation structure of their
protein unfolding data satisfactorily and subsequently estimate their model with an measurement
error. All these evidence suggest that there is a clear and urgent need for introducing additional
factors in order to make the TD framework empirically more �exible.
The main contributions of this paper are four-fold: First, we provide a review of existing

parametric TD models, which is dominated by one-factor models. Second, we propose a novel
distribution-driven nonlinear multi-factor TD model with latent components. While our approach
is applicable to general multi-factor UDs, we propose more speci�cally a model that is the transfor-
mation of a multivariate Ornstein Uhlenbeck (MVOU) process with latent components, where the
transformation function is endogenously determined by a �exible parametric speci�cation of the
stationary distribution of the observed variable. We show that exact ML inference for our model
can be made e¢ ciently by a modi�ed Kalman �lter algorithm. Third, exploiting the underlying
a¢ ne structure, we derive a semi-closed form expression for the VXF price based on our latent-
factor TD model. Finally, we examine the empirical performance of a two-factor speci�cation of
the proposed model in comparison with existing models for modelling the dynamics of VIX and
for pricing VXF contracts. We base our comparison on both the in-sample model �tness criteria
and the out-of-sample Root Mean Square Forecasting Error (RMSFE) for modelling VIX and on
both in- and out-of-sample Root Mean Square Pricing Error (RMSPE) for pricing VXFs. Our
results strongly favor our distribution-driven two-factor model, which outperforms all alternative
TD models strongly and consistently across all the categories and scenarios of our comparison.
Several speci�cation tests applied to competing models also reveals the proposed two-factor model
as the only model not rejected by the data.
The rest of the paper is organized as follows: In Section 2, we outline the TD framework and

review existing one-factor TD models. In Section 3, we propose a multi-factor distribution-driven
TD model with latent components and explains our modi�ed Kalman �lter procedure. Section 4
discusses the pricing of VXF contracts and our joint-measure estimation strategy. In Section 5,
we empirically examine the performance of the proposed model in comparison with existing TDs
for modelling VIX and pricing VXF contracts against several empirically relevant criteria. Some
concluding remarks are included in Section 6.



2. Transformed Di¤usion Models

2.1. The Framework

The TD approach assumes that the observed di¤usion process Y is a strictly monotone and
su¢ ciently smooth function5 of some UD X. More speci�cally, it assumes that

Yt = V (Xt;#) (2)

dXt = �X (Xt;!) dt+ �X (Xt;!) dWt (3)

where �X (Xt;!) and �2X (Xt;!) are the drift and di¤usion functions of X with parameter !.
V (x;#) or equivalently its unique inverse U (y;#) = V �1 (y;#) is known as the transformation
function with parameter #, satisfying @V (x;#)=@x 6= 0 for all x on its domain DX .
Most importantly, both X and Y are assumed to satisfy the regularity conditions set out

in, for example, Aït-Sahalia (1996b, Assumption A1)6, so that they both admit a unique weak
solution de�ned by their transition density pX and pY , respectively. In addition, both X and Y are
often assumed to be stationary with stationary distribution (cdf) FX and FY and corresponding
stationary density (pdf) fX and fY , respectively. Under the assumption that V (x;#) is strictly
monotone and twice continuously di¤erentiable, Ito�s Lemma implies that the drift and di¤usion
functions of Y can be written as

�Y (y; ) =
�X (U (y;#) ;!)

U 0 (y;#)
� �2X (U (y;#) ;!)U

00 (y;#)

2U 0 (y;#)3
(4)

�2Y (y; ) =
�2X (U (y;#) ;!)

U 0 (y;#)2
(5)

where U 0 (y;#) and U 00 (y;#) are its �rst two derivatives of U (y;#). More speci�cally, let pX (xjx0;�;!)
and pY (yjy0;�; ) be the transition density function of X and Y , respectively, where � is the
time interval. It follows immediately that

pY (yjy0;�; ) = jU 0 (y;#)j pX (U (y;#) jU (y0;#) ;�;!)

Clearly, the speci�cation of TD models has two components: the speci�cation of the UD X
in (3) and the speci�cation of the transformation function V in (2). Since in practice X is often
preferred to be tractable for inferential and derivative pricing purposes, the model in (3) is often,
but not necessary, chosen from the a¢ ne class. The literature of TDs has so far mainly focused
on one-factor models. Hence, unsurprisingly the CIR and the OU processes have been the most
frequently used UDs. Speci�cally, the CIR process, which is usually de�ned on DX 2 (0;1), is
written as

dXt = �(� �Xt)dt+ �
p
XtdWt

satisfying the conditions � > 0, � > 0 and 2�� � �2 > 0. The OU process de�ned on DX 2
(�1;1) is given by

dXt = �(� �Xt)dt+ �dWt

5The strict monotonicity condition ensures the invertibility of the transformation function and the smoothness
condition ensures its di¤erentiability so that necessary assumptions underlying the Ito�s Lemma hold.

6See, for example, Theorem 5.15 in Chapter 5 in Karatzas and Shreve (1991) for more details.



satisfying the conditions � > 0 and �2 > 0. For the CIR process, conditional on X0, the random
value of X after a time interval � has a non-central �2 distribution with fractional degrees of
freedom, and in the limit as � ! 1, the stationary distribution of X is Gamma. For the OU
process, both the conditional and stationary distributions are Gaussian.7

2.2. Speci�cations of Transformation Functions

For a given speci�cation of the UD X, the speci�cation of the TD Y will be completely determined
by the speci�cation of the transformation function V or equivalently but more conveniently U .
Hence, most of the e¤orts in TD modelling have been focused on the speci�cation of U . For
one-factor TD models, Bu et al. (2011) show that for a given speci�cation of X, the parametric
form of either the drift �Y or the di¤usion �

2
Y leads to the unique solution of U . In addition,

Bu, Jawadi and Li (2017) show that under the stationarity assumption, U can also be uniquely
determined from the stationary distributions FX and FY when X is suitably normalized. Bu et
al. (2018) formally discuss the identi�cation of TD models. In what follows, we give a summary
of existing one-factor TD models, focusing on their speci�cation strategies.

2.2.1. TDs with Polynomial Drift Function

One class of TD models are speci�ed to have a �exible polynomial drift function �Y . Bu, Jawadi
and Li (2017) de�ne this class of TD models as drift-driven. Note from (4) and (5) that for a
given speci�cation of X and that of �Y , the transformation function U is the solution to a system
of 2nd-order Ordinary Di¤erential Equations (ODEs), which depend on both �X and �

2
X . For an

arbitrary choice of �Y , closed-form solution for U is usually unavailable.
However, a special case arises when X is the CIR process and �Y is a cubic polynomial. Eraker

and Wang (2015) propose a simple TD model, denoted as CIREW in this paper, which assumes
that

U (y;#) = 1= (y � �)� �

It can be easily veri�ed that

�Y (y; ) = � (y � �) +
�
�2 � � (� + �)

�
(y � �)2 � � (y � �)3

�2Y (y; ) = �2 (y � �)4
�
(y � �)�1 � �

�
where �Y (y; ) is a cubic polynomial if � 6= 0. Since DX = (0;1), the CIREW model has a
bounded support on DY = (�; 1=� + �). Note that the model of Ahn and Gao (1999) (CIRAG) for
interest rates, also known as the 3/2 model by Goard and Mazur (2013) for VIX, arises as a special
case of the CIREW model when � = � = 0, implying that x = U (y) = 1=y. Consequently, the
CIRAG model has a quadratic drift function and a Constant Elasticity Variance (CEV) di¤usion
function �2Y (y; ) = �2y3.

2.2.2. TDs with Constant Elasticity Variance

Another class of TD models begin with a desired di¤usion function �2Y . Bu, Jawadi and Li (2017)
de�ne this class of TD models as di¤usion-driven. In this case, U is the solution to the 1st-order

7Grunbichler and Longsta¤ (1996) and Detemple and Osakwe (2000) consider the CIR model and the exponential
transform of the OU model, denoted as the OUDO model in this paper, respectively, for pricing VIX derivatives.



ODE in (5). Solving (5) is relatively simple and in some cases closed-form solutions exist. An
important speci�cation frequently used in �nancial modelling is the following CEV di¤usion

�2Y (y; ) = �2y2
 for 
 2 [0;+1)

It was introduced by Chan et al. (1992) who considered a linear drift and subsequently studied
by Aït-Sahalia (1996b) who promoted a nonlinear drift to improve the mean reversion. Bu et al.
(2011) propose a TD model with CEV di¤usion function where X is the CIR process, denoted as
CIRCEV. They show that the required transformation is given by

U(y;#) =

�
[y1�
= (1� 
)]

2
=4 for 
 2 [0; 1) [ (1;+1)

(log y)2 =4 for 
 = 1

and the resulting drift function given by

�Y (y; ) =
�
2�� (1� 
) + �2 (2
 � 1) =2

�
y2
�1 + �y= (2
 � 2)

In general, both the drift and the di¤usion functions of the CIRCEV model are nonlinear. In
addition to the CEV di¤usion function, the drift function exhibits a much stronger pull at high
levels of the state variable than the linear drift. Both properties are consistent with empirical
�ndings about the two functions reported in, for example, Aït-Sahalia (1996a,b), Conley et al.
(1997), Stanton (1997) and others. The CIRCEV model reduces to the CIR model when 
 = 0:5
and to the CIRAG model when 
 = 1:5. The CIRCEV model is clearly more general, since it
can provide a varied degree of nonlinearity in both the drift and the di¤usion functions by the
data-driven choice of 
.8 More importantly, in practice it is often necessary to test the validity of
linear or a¢ ne constraints whenever a more general nonlinear alternative model can be speci�ed.
Although the CIREW model is the transformation of the CIR model, it does not nest the CIR
model. Consequently, Eraker and Wang (2015) used a parametric bootstrap method to test the
CIR model against the CIREW. In contrast, the CIRCEVmodel has the advantages that it strictly
nests the CIR model as well as the CIRAG model. Therefore, testing the two models against the
CIRCEV model only requires a standard procedure such as the nested Likelihood Ratio (LR)
test. In addition, Bu et al. (2011) show that both the conditional and the unconditional moments
implied by the CIRCEV model are available in closed form. This may be another important
advantage over the CIREW model, since conditional mean forecasting and futures pricing based
on the CIRCEV model are consequently extremely convenient.

2.2.3. TDs with Flexible Stationary Distribution

The third class of TD models are speci�ed to have a �exible stationary distribution FY . Bu,
Jawadi and Li (2017) de�ne this class of TD models as distribution-driven. Under the stationarity
assumption, the stationary distributions of both Y and X exist. Assuming that U is strictly
increasing, we have

FY (y;#) = FX [U (y;#) ;!]

8Bu, Cheng and Hadri (2016, 2017) extend the CIRCEV model by allowing 
 and hence the transformation
function to be time-varying.



which then implies that
U (y;#) = F�1X [FY (y;#) ;!] (6)

The �rst two derivatives of U (y;#) can be written as

U 0 (y;#) =
fY (y;#)

fX fU (y;#) ;!g
(7)

U 00 (y;#) =
f 0Y (y;#)

fX fU (y;#) ;!g
� f 0X fU (y;#) ;!g

fY (y;#)
U 0 (y;#)3 (8)

where fY (y;#) and fX fx;!g are the stationary densities of Y and X, respectively, and f 0Y (y;#) =
@fY (y;#) =@y and f 0X fx;!g = @fX fx;!g =@x. It follows that the transition density of Y is given
by

pY (yjy0;�;!; #) =
fY (y;#)

fX fU (y;#) ;!g
pX (U (y;#) jU (y0;#) ;�;!) (9)

and closed-form drift and di¤usion functions can be obtained but plugging (6), (7) and (8) into
(4) and (5).
It is important to point out that under the assumptions set out for di¤usions X and Y in

Section 2.1, the Jacobian of the the transformation (7) is continuous and non-negative on DY ,
which ensures the strict monotonicity of the transformation (6). Meanwhile, when the UD X
satis�es the normalization conditions set out in Bu et al. (2018), the distribution-driven TD Y is
uniquely identi�ed.
This speci�cation strategy was considered by Forman and Sørensen (2014) for modelling mole-

cular dynamics, where they assume that X follows the OU process and the stationary distribution
of Y is a mixture of two normal distributions. The motivation behind this speci�cation is that
the stationary distribution of their protein folding data exhibits bimodality, and existing models
failed to model this feature adequately. Bu, Jawadi and Li (2017) considered transformed OU and
CIR models with a SKST stationary distribution for modelling VIX and pricing VXFs.

3. A Multi-Factor Transformed Di¤usion Model

Although TD models have proved to be quite useful for �nancial modelling, existing TDs are
predominantly one-factor models. Meanwhile, plenty of empirical evidence �nds one-factor models
not �exible enough to model more complicated dynamics. Therefore, there is often a strong
need for multi-factor models with latent components, particularly in areas such as term structure
modelling and derivative pricing. For this reason, we consider extending the TD approach to the
multi-factor case. We choose to present our modelling strategy in the context of a two-factor
model. On one hand, this facilitates our exposition. On the other hand, both the VIX and VXF
data in our empirical application indicate that a two-factor model is quite reasonable for our
modelling objectives9.

9In other �nancial contexts, such as modelling term structure of interest rates, it is often necessary to consider
three-factor models. See for example Litterman and Scheinkaman (1991) and Balduzzi et al. (1996).



3.1. TDs with a Latent Factor

Suppose that we wish to model a di¤usion process Y , assuming that Yt = V (Xt;#). Crucially, we
now assume that the SDE of X can be written as

dXt = �X (Xt; �t; !) dt+ �X (Xt; �t; !) dWX;t (10)

d�t = �� (�t;Xt; !) dt+ �� (�t;Xt; !) dW�;t (11)

where �t is a latent process. The two-dimensional vector Zt = (Xt; �t)
T follows a bivariate dif-

fusion system with parameter !. It is important to assume that the bivariate di¤usion Z satisfy
the regularity conditions set out in Aït-Sahalia (2008, Assumptions 1-4) which ensure that Z
admits a unique weak solution in terms of the bivariate transition density pZ (zjz0;�;!). It
then follows that continuous-time dynamics and the transition density of the transformed system
~Zt = (Yt; �t)

T = (V (Xt) ; �t)
T can be obtained by the multivariate version of the Ito�s Lemma and

the usual Jacobian method, respectively.

3.2. Bivariate OU Process

While the dynamics of X written in (10) and (11) are general, the TD framework usually requires
the UD process to be tractable. In the multi-factor setting, it is also preferable that the system of
Zt = (Xt; �t)

T is such that the marginal process Xt is tractable. For this reason, we consider the
following Bivariate OU (BVOU) process as a preferred candidate in this paper. The continuous-
time dynamics of the BVOU process can be written in a vector SDE as

dZt = � (�� Zt) dt+ �dWt

where

� =

�
�XX �X�
��X ���

�
; � =

�
�X
��

�
;� =

�
�X 0

���
p
1� �2��

�
; dWt =

�
dWX;t

dW�;t

�
and WX;t and W�;t are two independent Brownian motions. The parameters of this model can be
summarized as ! = (�; �;�)T .
The identi�cation of the parameters for this particular model from discrete data is discussed

in, for example, Philips (1973), Hansen and Sargent (1983) and Kessler and Rahbek (2004), and
Aït-Sahalia (2008). In particular, Aït-Sahalia (2008) show that by imposing � to be triangular,
the bivariate di¤usion Z is stationary and the following matrix equation ��+��T = ��T admits
a unique solution for �, which is the 2� 2 symmetric matrix � given by

� =
1

2tr [�]Det [�]

�
Det [�]��T + (� � tr [�] I)��T (� � tr [�] I)T

�
where I is the two-dimensional identity matrix. It then follows that the transition density of the
BVOU system is bivariate normal with

pZ (zjz0;�;!) = (2�)�1Det [
 (�)]�
1
2 exp

�
�1
2
[z �m (�; z0)]

T 
 (�)�1 [z �m (�; z0)]

�

 (�;!) = �� exp f���g� exp

�
��T�

	
m (�; z0;!) = �+ exp f���g (z0 � �)



where � is time interval between z0 and z. The stationary bivariate distribution of Z can be
obtained by taking the limit as �!1, which is given by

fZ (z;!) = (2�)
�1Det [�]�

1
2 exp

�
�1
2
[z � �]T ��1 [z � �]

�
Clearly, the stationary marginal distributions of X and � are both normal.

3.3. Distribution-Driven Transformation

Bu et al. (2011) argue that the distribution-driven approach for specifying the transformation func-
tion U has a clear advantage over other approaches, since researchers can directly and purposefully
specify a suitable parametric density fY (y;#) to incorporate stationary (long-run) distributional
information of the data. In addition, there is an enormous literature on density speci�cation and
estimation in statistics. Moreover, we can see from (7) and (9) that any closed-form fY (y;#) can
lead to a closed-form transformation function U (y;#) and transition density pY (yjy0;�;!; #).
For this reason, as in Section 2.2.3 we assume in this paper that the stationary distribution

of the observed di¤usion Y has a �exible parametric cdf FY (y;#) and pdf fY (y;#). Meanwhile,
let FX (x;!) and fX (x;!) denote, respectively, the stationary marginal cdf and pdf of X in the
bivariate system Z = (X; �)T , and f 0X (x;!) the derivative of fX (x;!). Under the maintained
assumption Yt = V (Xt;#), we arrive at exactly the same expressions for the distribution-driven
transformation U (y;#) and its derivatives as in (6), (7) and (8), respectively. Therefore, similar
to the one-factor case, the Jacobian of the transformation (7) is also guaranteed to be continuous
and non-negative, ensuring one-to-one mapping between Y and X.
By the same argument in Bu et al. (2018), the bivariate system also needs to be suitably

normalized to ensure the identi�cation of !. More speci�cally, in the BVOU case, the stationary
marginal distribution of X is normal, which is completely speci�ed by its mean and variance.
Therefore, identical to the one-factor transformed OU model, the parameters representing the
mean and variance of the stationary marginal distribution of X cannot be uniquely identi�ed and
thus must be �xed. Obviously, it is most convenient to normalize the system Z = (X; �)T so
that the stationary marginal distribution of X is standard normal. Mathematically, this can be
achieved by imposing

�X = 0 and sT�s = 1

where s = (1; 0)T is the selection vector such that the up-left element of sT�s equals to one.
Since the normalized X is symmetric around zero, there is no loss of generality to assume that
the transformation is strictly increasing. Given the speci�cation of fY (y;#) and the normalized
system (X; �)T , the bivariate transition density for the system ~Z = (Y; �)T is given by

p ~Z (y; �jy0; �0;�;!;#) = U 0 (y;#) pZ [U (y;#) ; �jU (y0;#) ; �0;�;!]

Finally, since �t is a latent process, the identi�cation of the parameters of the system follows
from the fact that the corresponding discrete-time dynamics of Z follows the Gaussian Linear
State-Space Model (LSSM). The conditions for the identi�cation of LSSM systems are discussed
in, for example, Hamilton (1994, Section 13.4) and references therein.



3.4. Speci�cation of the Stationary Distribution

Our modelling strategy requires us to specify a parametric stationary density function fY of Y ,
which then implies FY (y;#). Most �nancial data exhibit skewness, fat tails (c.f. Hansen 1994)
and possibly multi-modality that linear di¤usions are usually unable to produce (c.f. Aït-Sahalia
1996b, Fernandes 2006, Bu and Hadri 2007). The distribution-driven modelling strategy provides
full �exibility in the speci�cation of stationary distributions without sacri�cing the dynamic struc-
ture. Forman and Sørensen (2014) used the mixture of two normal distributions for their protein
unfolding data, and Bu, Jawadi and Li (2017) consider the SKST distribution of Hansen (1994)
for the VIX data. Meanwhile, the formulation and subsequent estimation of distribution-driven
TD models depend directly on the stationary pdf fY and cdf FY of Y , it is computationally
advantageous to choose a distribution for which fY is in closed form and the cdf FY is easy to
evaluate.
As in Forman and Sørensen (2014), we also promote the use of the mixture of distributions.

Speci�cally, we propose to use a mixture of two lognormal (M2LN) distributions for Y on DY 2
(0;1). The pdf of a M2LN random variable Y can be written as

fY;M2LN (yjw;m1; s1;m2; s2) = wfY;LN (yjm1; s1) + (1� w) fY;LN (yjm2; s2)

where fY;LN (�) denotes the lognormal pdf, and (m1; s1) and (m2; s2) are the log means and log
standard deviations of the two component distributions with w 2 [0; 1] being the component
weight. The corresponding cdf can be written as

FY;M2LN (yjw;m1; s1;m2; s2) = wFY;LN (yjm1; s1) + (1� w)FY;LN (yjm2; s2)

where FY;LN (�) denotes the lognormal cdf10. The M2LN distribution, with the above closed-form
pdf and cdf, is also well known for its ability to generate large skewness, excess kurtosis, and
as many as (but not necessarily) two modes, making it an attractive candidate distribution for
modelling �nancial data with positive support such as interest rates, exchange rates, and volatility
indices. In fact, the mixture of lognormal or normal distributions have been frequently used in
statistical modelling. See for example Bahra (1997) and Melick and Thomas (1997), Söderlind
and Svensson (1997), Brigo and Mercurio (2002), Forman and Sørensen (2014), and others.
That being said, distribution theories o¤er numerous potentially attractive candidate distrib-

utions that may also be considered for modelling �nancial variables. For example, in addition to
the SKST distribution, the Generalized Exponential Distribution (GED) of Cobb et al. (1983)
and Lye and Martin (1993) is an obvious alternative for empirical applications. The GED has
the advantage of being functionally �exible, nesting many standard distributions such as the nor-
mal, the student-t, the lognormal, the Gamma, and so on, as special cases. It also has tractable
recursive moment functions, making for example moment-based inference very convenient. Fer-
nandes (2006) used a special case of GED, known as the Generalized Normal Distribution (GND)
to model �nancial crashes. In fact, it is important to emphasize that the ability to allow for
abundant choices of distribution functions for the stationary distribution of the data is the main

10In fact, modelling Y with a M2LN distribution is equivalent to modelling lnY using a mixture of two normal
distributions (M2N).



advantage of the distribution-driven TD modelling approach.11

When the underlying multi-factor di¤usion process X is the (normalized) BVOU and the sta-
tionary distribution of Y is the M2LN, the resulting distribution-driven two-factor TD is denoted
as the BVOUM2LN model in this paper. More speci�cally, for the BVOUM2LN model, we have

U (y;#) = ��1 [FY;M2LN (y;#)]

U 0 (y;#) =
fY (y;#)

� fU (y;#)g

where� (�) and � f�g are the standard normal cdf and pdf, respectively, and # = (w;m1; s1;m2; s2)
T .

The complete speci�cation of the continuous-time dynamics of the BVOUM2LN model is given
Section 5.2.2.

3.5. Modi�ed Kalman Filter Estimation

Since the newly proposed multi-factor model contains latent factors, certain �ltering techniques
must be used for estimating the model parameters. Instead of having to use sophisticated and
computational expensive �ltering algorithms such as the particle �lter (e.g. Song and Xiu 2016) or
the Bayesian MCMC method (e.g. Eraker 2001), the transformation structure and the tractability
of the underlying MVOU system allows us to simply rely on the standard Kalman �lter algorithm
to evaluate the exact likelihood function of our model. Speci�cally, given observations of Y and
the parametric speci�cation of FY (y;#), we can obtain parameter-dependent observations of X
through the transformation as

Xt = U (Yt;#) = �
�1 [FY;M2LN (Yt;#)]

Since the discrete observations of X and � form a bivariate linear Gaussian system, we can cast
the discrete-time version of our BVOU system (X; �)T into the standard linear state-space form
with parameter !. Subsequently, using the standard Kalman �lter algorithm, we can obtain the
�ltered density function for X as pX (xt;!jIt) for each observation of Xt = U (Yt;#) where It is
the information set up to time t. The corresponding �ltered density function for each observation
of Y can then be obtained by the Jacobian method as

pY (yt;#; !jIt) =
fY (yt;#)

� fU (yt;#)g
pX (U (yt;#) ;!jIt)

We refer this procedure as the our modi�ed Kalman �lter algorithm. Clearly, this procedure
is computationally inexpensive compared to more sophisticated algorithms for general nonlinear
state-space models. It can be easily veri�ed that the ML likelihood estimator of the parameters of
our multi-factor TD model with latent components obtained from our procedure is asymptotically
normal with variance equal to the inverse of the information matrix.

11In our preliminary exercise, we also tried the GND for modelling the stationary distribution of the log of
VIX. We found that the results are similar to those from using the M2LN distribution. However, the latter has
closed-form pdf and cdf, whereas those of the former requires numerical integrations. We therefore choose to adopt
the M2LN speci�cation in our applications, as it signi�cantly facilitates the implementation of our distribution-
driven models, particularly in our bootstrap-based speci�cation tests where 1000 replications are considered for
each competing model.



4. VXF Pricing and Model Estimations

4.1. VXF Pricing

In the absence of arbitrage opportunities in a complete market, the price of a VXF contract is the
conditional expectation of the value of VIX under the unique risk-neutral Martingale measure.
This unique risk-neutral Q-measure corresponding to the observed physical P-measure can be
established by applying Girsanov�s theorem. Speci�cally, let � (Yt;') be a parametric function
specifying the Market Price of Risk (MPR) with respect to the Brownian motion, where ' is the
MPR parameter vector. For a di¤usion process Y with P-measure dynamics given by (1), the
equivalent risk-neutral Q-measure can be written as

dYt = [�Y (Yt; )� � (Yt;')�Y (Yt; )] dt+ �Y (Yt; ) dW
Q
t (12)

Following the convention, the parametric speci�cation of Y is assumed to be the same under
both measures. Note that for TDs, the speci�cation in (12) is determined jointly by the speci�-
cation of X and U (y;#). Thus, in order for �2Y (Yt; ) to be identical under both measures, the
parameters in the di¤usion function of X and U (y;#) must also be identical under both measures.
Consequently, the di¤usion function �2Y (Yt; ) remains the same under both measures, but the
drift parameters will di¤er under the two measures.
De�ne !Q as the parameter of X under the Q-measure. Then, at time t the price of a VXF

contract with time to maturity � is simply the time-t conditional expectation of the value of VIX
at maturity date t+ � under the Q-measure, i.e.,

F
�
yt; �t; � ;!

Q; #
�
= EQt

�
yjyt; �t; � ;!Q; #

�
=

Z 1

0

ypY
�
yjyt; �t; � ;!Q; #

�
dy (13)

Since the risk-neutral conditional marginal density pY
�
yjy0; �0;�;!Q; #

�
is in closed-form, the

pricing formula in (13) for our multi-factor model only involves a 1-dimensional numerical inte-
gration. Meanwhile, it is important to note that �t is latent. Following the literature, we use the
�ltered value of �t, i.e., �tjt = E (�tjIt), in our application.

4.2. Model Estimations

Let fYi�; i = 0; 1; :::; nY g be a sample of VIX data, where � is the sampling interval. De�ne !
as the parameter of X under the P-measure. Then, the log-likelihood (LL) function under the
physical measure is given by

LLY (!; #) =

nYX
i=1

ln pY
�
Yi�jY(i�1)�;�;!; #

�
Meanwhile, let fFj (� ; Yt) ; j = 1; 2; :::; nFg be a sample of VXF prices and assume that the VXF
pricing error has the following distribution

"j(!
Q; #) = Fj (� ; Yt)� Fj

�
Yt; �tjt; � ;!

Q; #
�
� N

�
0; �2F

�
As such, we can pro�le out the parameter �V XF as

�̂F =

vuut 1

nF

nFX
j=1

�
Fj (Yt; �)� Fj

�
Yt; �tjt; � ;!Q; #

��2



which is actually the Root Mean Square Pricing Error (RMSPE) of our VXF pricing model. It
follows that the pro�le LL for VXF data can be written as

LLF
�
!Q; #

�
=

nFX
j=1

ln

�
1

�̂F
�

�
"j(!

Q; #)

�̂F

��
where again � (�) is the standard normal pdf. Finally, the joint LL for a combination of VIX and
VXF data can be written as the following sum

LLTotal
�
!; !Q; #

�
= LLY (!; #) + LLF

�
!Q; #

�
5. Empirical Comparison

5.1. The Data

We compare the empirical performance of the newly proposed distribution-driven multi-factor
TD with latent component model with existing TD models for modelling the dynamics of VIX
and pricing VXFs. Our data consist of daily VIX indices from January 2, 1990 to March 20,
2015 (6352 observations) and VXF closing prices from March 26, 2004 to February 17, 2015
(19215 observations). Following Eraker and Wang (2015), we construct seven series of daily
constant maturity (1; 2; 3; 4; 5; 6; 7 month) VXF prices by linear interpolation, each containing
2742 observations. We use data up to December 31, 2013 for in-sample calibration and comparison
and the remaining data for out-of-sample comparison.
We plot the time series of daily VIX and the term structure of constant maturity VXF prices in

Figure 1 and 2, respectively, and some summary statistics are reported in Table 1. The evolution
of VIX indicates that the mean reversion is weak when the level of VIX is low but much stronger
when it is high. This suggests that a suitable di¤usion model for VIX should have a drift function
that is close to zero when VIX is low and strongly negative when VIX is high. Meanwhile, the local
volatility of VIX is also low when VIX is low and substantially higher otherwise. This suggests
that a suitable di¤usion model should also have a di¤usion function that increases rapidly in VIX.
The mean of VIX is 20:61 and the standard deviation is 10:19. The large skewness 2:21 and
kurtosis 9:25 suggest strong deviation from normality. Augmented Dickey-Fuller tests on these
time series all rejected the unit root hypothesis with 4 lags at 5% signi�cance level. Therefore,
the use of stationary di¤usion models is justi�ed. More importantly, Mencía and Sentana (2013)
show that the daily VIX series exhibits the ARMA(2,1) autocorrelation structure12. Thus, the
use of our proposed two-factor TD model is justi�ed, since it can be easily veri�ed that it implies
the ARMA(2,1) structure. Meanwhile, the term structure of VXFs is relatively �at and the
evolutionary paths of the seven series are highly correlated. The �rst two eigenvalues of the
correlation matrix dominate the others, explaining approximately 99:9% of the cross sectional
variation in these series. This is further justi�cation for the use of a two-factor models for pricing
VXFs.

[Figure 1 and 2]
[Table 1]

12See Figure 2 of Mencía and Sentana (2013) for more details. Although our sample period is longer, we �nd the
same ARMA(2,1) structure for our VIX data.



5.2. Competing Models

5.2.1. One-Factor Models

A total of eight models are considered in our empirical comparison, six of which are one-factor
models and the other two are two-factor models. Four of the six one-factor models are transformed
CIR models. They are: the benchmark CIR model, the drift-driven CIREW model, the di¤usion-
driven CIRCEV model, and �nally the distribution-driven CIRM2LN model, which denotes the
transformed CIR model with M2LN stationary distribution. Speci�cally, the CIRM2LN model
can be written as

Yt = F�1Y;M2LN [� (Xt; 2��; 1= (2�)) ;#]

dXt = � (� �Xt) dt+
p
XtdWt

where # = (w;m1; s1;m2; s2)
T and � (�; 2��; 1= (2�)) is the cdf of the Gamma distribution with

shape parameter 2�� and scale parameter 1= (2�). The remaining two one-factor models are
transformed OU models. One is the benchmark exponential-transformed OU model of Detemple
and Osakwe (2000), denoted as the OUDO model, which can be written as

Yt = exp (Xt)

dXt = � (� �Xt) dt+ �dWt

The other is the distribution-driven OUM2LN model, which denotes the transformed OU model
with M2LN stationary distribution. Speci�cally, the OUM2LN model can be written as

Yt = F�1Y;M2LN [� (2�Xt) ;#]

dXt = ��Xtdt+ dWt

The drift and di¤usion functions of the CIRM2LN and the OUM2LN models can be obtained in
closed form from (4), (5), (7), and (8), and their closed-form transition densities can be obtained
from (9).

5.2.2. Two-Factor Models

We consider a couple of two-factor models in our empirical comparison. The �rst is the model
considered by Mencía and Sentana (2013), which is included in our study as the two-factor bench-
mark model. Mencía and Sentana (2013) refers to this model as the Central Tendency OU model.
This model e¤ectively assumes that the transformation is exponential and can be written as

Yt = exp (Xt)

dXt = � (�t �Xt) dt+ �dWX;t

d�t = �� (� � �t) dt+ ��dW�;t

where WX;t and W�;t are independent. The purpose of the exponential transformation is to ensure
DY 2 (0;1), but clearly it o¤ers no additional degree-of-freedom. We refer to it as the BVOUMS
model in this paper.



The main two-factor TD model to be investigated in our comparison is the newly proposed
two-factor distribution-driven BVOUM2LN model. The BVOUM2LN model also assumes that X
follows the above BVOU system, but crucially the transformation is parameter-dependent such
that the stationary distribution of Y is the M2LN distribution, which allows us to model skewness,
kurtosis and potential bimodality in the stationary distribution of our data with extra degrees of
freedom. By construction, the domain of Y is on DY 2 (0;1), which is coherent for modelling
and predicting volatility. This model can be written more speci�cally as

Yt = F�1Y;M2LN (� (Xt) ;#)

dXt = � (�t �Xt) dt+ �dWX;t

d�t = ����tdt+ ��dW�;t

whereWX;t andW�;t are independent and the normalization constraint �� =
p
(2�� �2) (�+ ��)��=�2

is imposed. Moreover, we can write down the continuous-time dynamics in terms of SDE in closed
form as

dYt =

�
� [�t � U (Yt;#)]

U 0 (Yt;#)
� �2U 00 (Yt;#)

2U 0 (Yt;#)
3

�
dt+

�

U 0 (Yt;#)
dWY;t

d�t = ����tdt+
p
(2�� �2) (�+ ��)��=�2dW�;t

with

U (y;#) = ��1 [FY;M2LN (y;#)]

U 0 (y;#) =
fY;M2LN (y;#)

� fU (y;#)g

U 00 (y;#) =
f 0Y;M2LN (y;#)

� fU (y;#)g � �0 fU (y;#)g
fY;M2LN (y;#)

U 0 (y;#)3

where f 0Y;M2LN (y;#) and �
0 (x) are the �rst derivatives of fY;M2LN (y;#) and � (x), respectively.

5.3. Analysis of Time Series of VIX

We �rst examine the performance of competing models for modelling the VIX time series. We
investigate both the in-sample goodness-of-�t measure and out-of-sample forecasting accuracy as
well as consider three speci�cation tests. One of the main advantages of TDs is the availability
of closed-form transition densities. Thus, ML is our preferred choice of estimation method. The
ML estimates of the parameters of competing models are reported in the top panel Table 2. Our
initial unconstrained estimation of the CIREW model resulted in a negative estimate of �. Since �
is the lower bound of the support implied by the CIREW model, a negative � is inconsistent with
the nature of VIX. We then re-estimated the model by imposing � = 0. Meanwhile, � determines
the upper bound of support. Therefore, no standard errors are reported for these two parameters.
Moreover, when estimating the three distribution-driven models, we pro�led out the parameters
m2 and s2 of the M2LN distribution by matching the model-implied stationary mean and variance
with the sample mean and variance of the VIX data13. Furthermore, for the BVOUM2LN model,
13This pro�ling method very e¤ectively eliminates the possibility of the numerical optimization procedure con-

verging to corner solutions without sacri�cing any signi�cant goodness-of-�t of the models to the data.



normalization requires the parameters � and �� to be constrained, and thus no standard errors
are reported for the estimates of m2, s2, � and ��. For the same reason, no standard errors are
reported for � of the CIRM2LN model and � and � of the OUM2LN model either.

[Table 2]

5.3.1. In-Sample Performance

We �rst examine the general goodness-of-�t of each model to the VIX data in terms of LL,
AIC and BIC measures reported in the middle panel of Table 2. The relative ranking of each
model is the same in terms of any of the three measures. The worst performing model is the
CIR model, followed closely by the OUDO model. This is expected, because the CIR model is a
simple linear model and also the exponential transformation of the OUDOmodel o¤ers no e¤ective
degrees of freedom to the simple linear underlying OU model. The remaining one-factor models
all have parameter-dependent transformations. Consequently, the goodness-of-�t of these models
are signi�cantly better than the two benchmark models.
It is interesting to examine the relative performance of the three transformed CIR models,

since they represent the drift-driven, the di¤usion-driven and the distribution-driven models, re-
spectively. The distribution-driven CIRM2LNmodel provided slightly better �t than the di¤usion-
driven CIRCEV, which slightly outperformed the drift-driven CIREW model. Compared to the
CIREW model, the CIRCEV model has a well de�ned support on DY = (0;1), making it a
naturally coherent model for variables such as nominal interest rates and VIX. In addition, the
CIRCEV model has a closed-form conditional mean and hence a closed-form pricing formula for
the VXFs. These features make the CIRCEV model a very attractive alternative to the CIREW
model in practice.
We plot in Figure 3 the estimated drift and di¤usion functions of the one-factor models. We

can see that when VIX is low, the estimated functions are relatively close among di¤erent models,
but their di¤erences increase quite dramatically as VIX increases. As we have seen from Figure 1,
strong mean reversion and high volatility at high levels of VIX is a prominent feature of the VIX
data. However, both functions of the CIR model are linear and very �at, unable to generate strong
enough mean reversion or large enough volatility at high levels of VIX. All the other one-factor
models have nonlinear drift and di¤usion functions, but the distribution-driven CIRM2LN model
has the strongest mean reversion and the largest volatility at high levels of VIX, unsurprisingly
making it the best �tting one-factor model. Intuitively, the �exible M2LN distribution captures the
information particularly in the right tail of the distribution much better than other models. This
information is then suitably incorporated into the shapes of the drift and the di¤usion functions
to produce a better �t to the data. The estimated functions for the remaining one-factor models
are relatively close.

[Figure 3]

We now turn our attention to the two-factor models. It is very interesting to note that despite
the presence of a latent central tendency factor, the BVOUMS model only performed better than
the benchmark CIR and OUDO models and was even outperformed by all other one-factor mod-
els. This is potentially an extremely important observation, as this suggests that at least for our
data, the �exibility provided by the parameter-dependent nonlinear transformations play a more



important role than the additional latent factor, if either but not both is included. Meanwhile,
the BVOUM2LN model outperformed all other models by quite clear margins. This is expected,
because the BVOUM2LN model contains not only a �exible parameter-dependent distribution-
driven transformation function, designed to capture potentially crucial information in the sta-
tionary long-run behavior of VIX, but also a latent factor, which tracks the stochastic short-run
central tendency of movement of VIX.
We plot in Figure 4 the estimated drift functions for the two two-factor models, conditional on

the latent factors, taking several values between the 1st and the 99th quantile of their estimated
stationary distributions. Note that the conditional drift functions for both models are nonlinear
and relatively close when VIX is low, but their di¤erences start to emerge as VIX goes up. Specif-
ically, as VIX increases, the spread of the conditional drift functions across di¤erent values of the
latent factor becomes wider for the BVOUM2LN model than for the BVOUMS model. Another
striking di¤erence is that the conditional drift functions of the BVOUMS model are globally con-
cave in the level of VIX, but those of the BVOUM2LN model are not. We can see quite clearly that
when VIX is in the middle range, the drift functions of the BVOUM2LN model have some degrees
of convexities conditional on medium to low values of the latent factor. The wider spread and
the higher degrees of nonlinearities of the conditional drift functions of the BVOUM2LN model
are but potentially vital di¤erences in explaining the dynamics of VIX. We can only attribute
these to the �exible distribution-driven transformation. That is, the M2LN distribution can more
�exibly capture the spread and variation in the density curve of the stationary distribution of the
VIX data, and crucially such distributional features are then constructively translated into the
variations in the estimated drift functions.

[Figure 4]

To further demonstrate the di¤erences of the two models, we plot in the left panel of Figure 5
the estimated stationary densities of the two two-factor models together with that of the bench-
mark CIR model and the nonparametric kernel density14. As we can see, the implied stationary
density by the BVOUM2LN model matches the kernel density very closely, incorporating most, if
not all, key distributional features of the data. In contrast, a very large proportion in the middle
of the stationary density implied by the BVOUMS model departed signi�cantly from the kernel
density, leading to signi�cant di¤erences in the estimated functions and goodness of �t to the data.
Furthermore, we plot in the right panel of Figure 5 the estimated di¤usion functions for the three
models together with the nonparametric kernel di¤usion estimate15. Compared to the �at linear
di¤usion function of the CIR model, that of the BVOUMS model is nonlinear and increases in
VIX, but it is only to a limited extent. The BVOUM2LN model, however, shows much stronger
nonlinearity and produces almost twice as much volatility for high levels of VIX, which is more
consistent with our observation from the time series plot of the VIX. Most importantly, the esti-
mated di¤usion function of the BVOUM2LN model matches quite closely with the nonparametric
estimate in terms of both the level and the slope. In clear contrast, however, that of the BVOUMS

14We use the bandwidth hM which is justi�ed in our discussion about the bandwidth selection in the speci�cation
test for di¤usion models of Aït-Sahalia (1996b).
15We estimate the di¤usion function by the Nadaraya-Watson estimator. The same estimator was considered by

Jiang and Knight (1997), Stanton (1997). See Aït-Sahalia and Park (2016) for more details.



model deviates quite substantially from the nonparametric estimate, with no overlapping what-
soever except for very low levels of VIX. Above all, the superior suitability of the BVOUM2LN
model over other models is quite clear.

[Figure 5]

To formally assess the speci�cations of competing models, we present the results from three
speci�cation tests in Table 3. First, we consider the kernel-based nonparametric stationary den-
sity test for parametric di¤usion models proposed by Aït-Sahalia (1996b)16. This test assesses
the suitability of a parametric di¤usion model by evaluating the distance between its stationary
density and the nonparametric kernel density. We denote the test statistic as Q (h) where h is the
bandwidth for the kernel density estimator. The test rejects the null hypothesis that a paramet-
ric model is correctly speci�ed if Q (h) exceeds certain critical value. We begin with two widely
used data-driven bandwidths, namely, the Silverman�s rule-of-thumb bandwidth hS (c.f. Silver-
man 1986) and the K-fold blockwise log-likelihood cross validation (LLCV) bandwidth hK with
K = 10. In the upper panel of Figure 6, we plot the kernel densities based on hS and hK over the
empirical support of VIX. It is important to note that the Silverman�s bandwidth clearly under-
smoothes the density, whereas the 10-fold LLCV bandwidth visibly oversmoothes slightly. Thus,
we may argue that the most suitable bandwidth, which is di¢ cult to pin down precisely, should
lie somewhere between hS and hK . We therefore consider the third bandwidth hM = (hS + hK) =2
and plot the resulting kernel density in the bottom panel of Figure 6. As we can see, the density
with hM has quite suitable smoothness and at the same time preserves distinctive features of the
shape of the distribution17.

[Table 3]
[Figure 6]

We report the results of the test based on hS, hM and hK in the top panel of Table 3. Note that
the stationary density of the CIR model is Gamma and those of the CIREW and the CIRCEV
models are the transformed Gamma. The stationary density of the OUDO and the BVOUMS
models are lognormal, and �nally those of the CIRM2LN, the OUM2LN, and the BVOUM2LN
models are the M2LN. Following Aït-Sahalia (1996b) and Fernandes (2006), we use the most
favorable test statistic obtained by minimizing the measured distance with respect to the para-
meters of the stationary density of each model. Therefore, the test results for models with the
same parametric stationary density are identical. As we can see, our results are consistent across
all three bandwidths. The CIR, the CIREW, the CIRCEV, the OUDO and the BVOUMS models
are all strongly rejected by the test, with p-values being practically zero, and all three models with
the M2LN stationary distribution are not rejected. In particular, the p-value for the test with hM ,
which has been shown in Figure 6 to be a very reasonable bandwidth, is fairly large. This means
that the M2LN distribution �ts very closely to the true but unknown stationary distribution of
the VIX data. To further con�rm the suitability of the M2LN speci�cation, we plot the estimated

16Fernandes (2006) employ the same test in his application of di¤usion models to forecasting �nancial crashes.
17Since the support of VIX is positive, we performed the test based on the distance between the kernel density

of the log of VIX and the stationary density of the log of VIX implied by each parametric di¤usion model. The
values of the three bandwidths are hS = 0:064, hM = 0:109 and hK = 0:153, respectively.



M2LN density on top of the kernel density with hM in the bottom panel of Figure 6. As we can
quite clearly see, the two densities are very close to each other over the empirical support of VIX.
Therefore, we may argue that our choice of the M2LN distribution is quite reasonably justi�ed.
Second, we employ a LR test to examine whether each of those relatively simple models is

rejected in favor of the most general BVOUM2LN model. Since those models are not strictly
nested in the BVOUM2LN model, following Eraker and Wang (2015) we perform the test using
parametric bootstrap. Speci�cally, we simulate 1000 replications of arti�cial time series from
each model under the null hypothesis using the ML estimates from the original data as the true
parameters. For each replication, we estimate the model under the null and the BVOUM2LN
model by ML. This leads to an empirical sample of 1000 bootstrap LR statistics, from which we
then �nd the empirical p-value for the LR statistic obtained from the original data. We report
the original LR statistics and their corresponding bootstrap p-values for each model in the middle
panel of Table 3. As we can see, our bootstrap LR tests strongly reject all models in favor of
the BVOUM2LN model. In particular, for every model considered as the null, none of the 1000
bootstrap LR statistics actually exceeds the original LR statistic. Therefore, the evidence in favor
of our proposed distribution-driven two-factor model is very strong.
Finally, to examine the overall goodness-of-�t of each competing model to the data, we consider

an information-theoretic approach for testing model speci�cation. Speci�cally, we employ the
Information Matrix (IM) test, originally proposed by White (1982) and then studied by Chesher
(1983), Lancaster (1984), Orme (1990), Chesher and Spady (1991), Horowitz (1994), and others,
for overall model speci�cation18. Since the IM test tends to su¤er quite severe size distortion if the
asymptotic critical value is used, resulting in signi�cant over-rejection in �nite samples (c.f. Orme
1990, Chesher and Spady 1991 and Horowitz 1994), we adopt the parametric bootstrap approach
suggested by Horowitz (1994). More speci�cally, we generate 1000 replications of arti�cial time
series from each model and calculate the IM test statistic based on each of the 1000 replications.
From the 1000 bootstrap IM test statistics, we obtain the empirical p-value for the IM statistic,
denoted by D, obtained from the original data. The results are reported in the bottom panel of
Table 3. Unsurprisingly, all one-factor models are strongly rejected, with empirical p-values equal
to zero, meaning that literally none of the 1000 bootstrap samples can produce an IM test statistic
larger than the statistic obtained from the original sample. For the BVOUMS model, however,
the IM statistics from 7 out of the 1000 bootstrap samples turn out to be greater than the original
statistic, resulting in an empirical p-value of 0:007 and a rejection at 1% signi�cance level. These
rejections are not surprising, because our �rst two tests both rejected these models. Finally, we
�nd that, in contrast, the empirical p-value of the IM test for the BVOUM2LN model is 0:063,
meaning that out of the 1000 replications we observe 63 replications for which the corresponding IM
statistics actually exceed the original test statistic. Thus, the BVOUM2LNmodel is not rejected at
5% signi�cance level. Although the non-rejection may seem to be a fairly small margin, considering
the parsimony of the BVOUM2LN model and relatively large sample size, we may argue that the
presented evidence of its goodness-of-�t to the data is fairly satisfactory.

18See, for example, Maasoumi and Racine (2002, 2008), Hall et al. (2015) for more examples of the information-
theoretical approach for testing model speci�cations.



5.3.2. Out-of-Sample Performance

We now compare models in terms of their out-of-sample forecasting accuracy. For each model,
we produce six series of rolling sample conditional mean forecasts for the VIX corresponding to
forecasting horizons of 1 day (1D), 1 week (1W), and 1, 3, 5, 7 months (1M, 3M, 5M, 7M)19. For
each horizon, we compute the RMSFE based on the observed out-of-sample series and its rolling
sample forecasts produced by each model, and report the results in the bottom panel of Table 2.
For forecasting at 1D and 1W horizons, the CIR model is the best performing one-factor

model (1.207 and 2.601) followed immediately by the OUDO model (1.208 and 2.618). At 1M
horizon, however, the best performing one-factor model is the OUDO model (3.616) followed by
the CIR model (3.626). The fact that they outperform the remaining one-factor models at these
horizons suggests that at relatively short horizons, nonlinear parameter-dependent transformations
may not signi�cantly improve the ability of one-factor TD models to track the conditional mean.
However, as the forecasting horizon increases to medium range (3M) and long range (5M and 7M),
the performance of the CIR and OUDO models deteriorate signi�cantly and are then exceeded
by other one-factor TD models. This is not surprising, because at short forecasting horizons,
the conditional distributions of all di¤usion models are close to the normal distribution. Thus,
the ability of more �exible models is minimized, but more parsimonious models usually have
the advantage. At longer horizons, however, the conditional mean tends to depend more on the
information in the stationary distribution (long-run behavior) implied by the forecasting model, for
which more sophisticated models, particularly our distribution-driven models have the advantages.
This explains why, among one-factor models, the two simplest models performed the best in short
horizons and the worst in medium to long horizons forecasts.
The main advantage of the two two-factor models is that the additional central tendency vari-

able can model the evolution of the conditional mean with more �exibility. Thus, we expect the
two two-factor models to perform well at varied horizons. We also expect the newly proposed
BVOUM2LN model to perform better than the BVOUMS model, since the distribution-driven
transformation is expected to capture the nonlinear dynamics and particularly the information in
the stationary distribution more e¤ectively. Both of our expectations are con�rmed by the fore-
casting results. Firstly, we �nd that both two-factor models outperformed all one-factor models at
all forecasting horizons. In particular, the margins are more substantial for longer forecasting hori-
zons than for shorter horizons. More importantly, both two-factor models outperformed one-factor
models even at the shortest horizon. Comparing between the two two-factor models, the newly
proposed BVOUM2LN model, which has additional degrees of freedom in the transformation func-
tion, outperformed the BVOUMS model by signi�cant margins at all forecasting horizons. Most
importantly, the advantage increases monotonically as forecasting horizon increases, con�rming
that the superiority of the BVOUM2LN model can indeed be attributed to its distribution-driven
transformation design to incorporate information in the stationary distribution (long-run behav-
ior) of the dynamics of VIX. In summary, the new BVOUM2LN model outperformed all competing
models both in-sample and out-of-sample in every category and scenario of comparison that we
considered.
19The shortest forecasting horizon of one day matches the frequency of the original VIX series, and the longest

horizon of seven months matches the longest time-to-maturity of our interpolated constant maturity VIX futures.



5.4. Analysis of VXF Pricing

We now examine the performances of competing TD models in pricing VXFs. We �rst outline
our assumptions on the risk-neutral Q-measure dynamics of competing models. As explained in
Section 4.1, the transformation function U must be the same under both P- and Q-measures, we
therefore focus on the Q-measure dynamics of the UD X for each model. For the CIR model and
the three transformed CIR models, we assume that

dXt = �Q
�
�Q �Xt

�
dt+ �

p
XtdW

Q
t

satisfying �Q > 0, �Q > 0 and 2�Q�Q � �2 > 0. For the two transformed OU models, we assume
that

dXt = �Q
�
�Q �Xt

�
dt+ �dWQ

t

satisfying �Q > 0. For the CIRM2LN and the OUM2LN models, we impose the additional
normalization constraint � = 1. For the two two-factor models, we follow Mencía and Sentana
(2013) in assuming the following the Q-measure dynamics for the underlying bivariate system:

dXt = �
�
�Qt �Xt

�
dt+ �dWQ

X;t

d�Qt = ��
�
�Q � �Qt

�
dt+ ��dW

Q
�;t

with �Qt = �t � �&X=� and �
Q = � � �&X=�� ��&�=��, where &X and &� are the MPR for the two

Brownian motions, respectively. For the BVOUM2LN model, we impose the additional normal-
ization constraints � = 0 and �� =

p
(2�� �2) (�+ ��)��=�2.

Following Eraker and Wang (2015), we estimate model parameters under both P- and Q-
measures jointly by ML using the combination of the VIX data and the 1; 3; 5 and 7-month
constant maturity VXF data. The parameter estimates are provided in the upper panel of Table
4. Note that the unconstrained estimate of � in the CIREW model is positive from our joint
measure estimation. Thus, no constrained estimation is required. For the same reason as in the
VIX only case, no standard errors are reported for the set of parameters discussed in Section 5.3.
The last two rows report the risk-neutral parameters �Q and �Q for the six one-factor models
and the MPR parameters &X and &� for the two two-factor models. For all one-factor models,
the di¤erence between their parameter estimates under the two measures con�rms the negative
market price of volatility risk. For both two-factor models, this is also con�rmed directly by the
negative values of the MPR parameters.

[Table 4]

5.4.1. In-Sample Performance

The LL and the in-sample RMSPE for each model are reported in the middle panel of Table
4. Similar to the VIX only case, in terms of both LL and RMSPE, the CIR model is the worst
performing model followed by the OUDO model, con�rming again that models without e¤ective
transformations are too restrictive. The three transformed CIR models have slight advantages over
the OUM2LN model, and the distribution-driven CIRM2LN model is again the best performing
transformed CIR model.



We expect the two-factor models to perform better than the one-factor models, because pricing
VXFs is e¤ectively an exercise of conditional mean forecasting under the risk-neutral Q-measure.
In terms of both LL and RMSPE, again both two-factor models outperformed all one-factor models
by clear margins. Speci�cally, the RMSPE from the BVOUMS model (2.162) is approximately
33% and 18% smaller than the worst performing one-factor CIR model (3.223), and the best
performing one-factor CIRM2LN model (2.628), respectively. This con�rms that the additional
latent central tendency variable indeed helps capturing the conditional mean movement more
e¤ectively. Meanwhile, the performance of the BVOUM2LN model is much stronger than that of
the BVOUMS model. The RMSPE from the BVOUM2LN model (1.694) is approximately 47%
and 36% smaller than the CIR model and the CIRM2LN model, respectively. Between the two
two-factor models, the RMSPE of the distribution-driven BVOUM2LN model is approximately
22% smaller than that of the BVOUMS model which has no e¤ective transformation. Thus, as in
the VIX only case, this con�rms that the degree of freedom provided by the distribution-driven
transformation signi�cantly improves the �exibility of the model.

5.4.2. Out-of-Sample Performance

To examine out-of-sample performance in pricing VXFs, we calculate the RMSPE for pricing
constant maturity VXFs in our forecasting sample. The RMSPE results obtained from VXFs
with all the maturities and VXFs with only 1, 3, 5 and 7 month individual maturities are all
presented in the bottom panel of Table 4. The CIR model and the OUDO model outperformed
remaining one-factor models at 1M, 3M, 5M maturities and all maturities put together. However,
as the maturity (forecasting horizon) increases to 7M, the advantage gradually disappears, and
the two models are outperformed eventually by more �exibly single-factor models. This result
is consistent with our �ndings in the VIX only case. That is, for the one-factor models, simple
models tend to forecast well in short and at best at medium horizons, and TD models with more
�exible transformations tend to forecast well in long horizons in addition to the fact that more
�exible models almost always perform better in the sample.
We again expect our two-factor models to perform better in forecasting. In fact, our VXF fore-

casting results are even stronger and more convincing than the VIX forecasting results. Speci�cally,
in terms of the RMSPE for VXFs with all maturities, the results from the BVOUMS model (1.220)
is approximately 39% and 45% smaller than the best and the worst performing one-factor models,
respectively. Moreover, the results from the BVOUM2LN model is even 54% and 58% smaller
than the best and the worst performing one-factor models, respectively. Only at 1M maturity,
which is the shortest maturity considered, the CIR model (0.978) performed slightly better than
the BVOUMS model (1.108). However, even at this shortest horizon, the RMSPE from the newly
proposed BVOUM2LN model (0.574) is only 57% of that of the CIR model. Thus, the advantage
of our distribution-driven transformed two-factor model is substantial. Above all, in terms of the
out-of-sample VXF pricing errors, the newly proposed BVOUM2LN model is always substantially
better than any other models across all maturities considered.

6. Conclusion

We made an important contribution to the literature of TD modelling by proposing a novel
framework for modelling multi-factor TD models with latent components. We advocated the



use of the distribution-driven approach for the speci�cation of the transformation functions and
the use of the analytically tractable MVOU di¤usion process as the underlying system. Our
framework is intuitively constructive, statistically �exible, analytically tractable, and practically
easy to implement. We examine the performance of the newly proposed latent-factor TD model
in comparison with existing one-factor TDs in modelling the dynamics of VIX and pricing VXF
contracts. The newly proposed distribution-driven two-factor BVOUM2LN model outperformed
every competing model both in the sample and out of the sample across all forecasting horizons
considered for both the VIX and VXFs.
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Figure 1: Time Series of Daily VIX
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Figure 2: Term Structure of Constant Maturity VXFs

10
7

20

6

30

2016

40

5 2014

50

Months to Expiration

4 2012

60

Year

2010

70

3
20082 2006

1 2004



Figure 3: Estimated Drift and Di¤usion Functions of One-Factor TD Models

Figure 4: Estimated Conditional Drift Functions of Two-Factor TD Models

Figure 5: Estimated Stationary Densities and Di¤usion Functions



Figure 6: Stationary Densities of Daily VIX
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Table 1: Summary of VIX and Constant Maturity VXFs
VXF VIX
1M 2M 3M 4M 5M 6M 7M

Correlation 1.000 0.989 0.974 0.958 0.941 0.925 0.912
1.000 0.996 0.986 0.975 0.963 0.953

1.000 0.997 0.990 0.982 0.973
1.000 0.998 0.992 0.987

1.000 0.998 0.994
1.000 0.999

1.000

Eigenvalue 6.852 0.136 0.008 0.002 0.001 0.000 0.000

Maximum 65.462 59.004 53.782 49.727 46.707 44.635 44.085 80.860
Minimum 11.287 12.230 12.540 12.870 13.200 13.530 13.687 9.310
Mean 20.502 21.128 21.521 21.824 22.096 22.343 22.539 19.921
Median 18.180 19.312 19.944 20.506 20.972 21.272 21.534 18.130
Std. Dev. 8.351 7.672 7.153 6.806 6.566 6.384 6.231 7.982
Skewness 1.845 1.535 1.279 1.082 0.951 0.854 0.794 2.072
Kurtosis 7.070 5.815 4.717 3.936 3.508 3.232 3.085 10.466



Table 2: Estimation and Forecasting Results for VIX
One-Factor Models Two-Factor Models

Transformed CIR Transformed OU Transformed BVOU
CIR CIREW CIRCEV CIRM2LN OUDO OUM2LN BVOUMS BVOUM2LN

� 4.717 3.630 3.749 2.901 3.923 3.240 93.801 89.578
(0.634) (0.558) (0.565) (0.253) (0.578) (0.116) (13.008) (12.888)

� 20.158 0.053 0.133 0.462 2.938 0 2.934 0
(0.906) (0.003) (0.038) (0.044) (0.051) - (0.076) -

� 4.666 0.231 0.282 1 0.974 1 1.030 2.669
(0.043) (0.005) (0.022) - (0.009) - (0.012) (0.055)

�� 1.588 1.157
(0.372) (0.140)

�� 0.592 1.500
(0.032) -


 1.414
(0.027)

� 0
-

� 0.005
-

w 0.916 0.865 0.852
(0.030) (0.039) (0.038)

�1 2.983 2.879 2.873
(0.017) (0.010) (0.011)

s1 0.365 0.331 0.330
(0.005) (0.006) (0.006)

�2 2.483 3.336 3.333
- - -

s2 0.155 0.449 0.444
- - -

LL (�103) -10.006 -9.307 -9.305 -9.283 -9.436 -9.324 -9.364 -9.251
AIC (�104) 2.002 1.862 1.862 1.858 1.888 1.866 1.874 1.852
BIC (�104) 2.004 1.865 1.865 1.861 1.890 1.868 1.877 1.856
RMSFE_1D 1.207 1.211 1.210 1.211 1.208 1.210 1.206 1.204
RMSFE_1W 2.601 2.640 2.635 2.646 2.618 2.633 2.495 2.484
RMSFE_1M 3.626 3.697 3.674 3.727 3.616 3.639 3.402 3.371
RMSFE_3M 4.718 4.358 4.342 4.331 4.362 4.193 3.410 3.244
RMSFE_5M 5.474 5.185 5.164 5.160 5.162 5.093 4.066 3.870
RMSFE_7M 5.136 4.922 4.898 4.904 4.884 4.891 3.811 3.630



Table 3: Speci�cation Diagnostics
One-Factor Models Two-Factor Models

Transformed CIR Transformed OU Transformed BVOU
CIR CIREW CIRCEV CIRM2LN OUDO OUM2LN BVOUMS BVOUM2LN

Nonparametric Stationary Density Test (Aït-Sahalia 1996)
Q (hS) 2.868 2.983 2.703 0.319 2.629 0.319 2.629 0.319
p-value 0.000 0.000 0.000 0.183 0.000 0.183 0.000 0.183
Q (hM) 2.414 2.278 1.965 0.071 1.909 0.071 1.909 0.071
p-value 0.000 0.000 0.000 0.906 0.000 0.906 0.000 0.906
Q (hK) 1.867 1.329 1.055 0.023 1.070 0.023 1.070 0.023
p-value 0.000 0.000 0.000 0.929 0.000 0.929 0.000 0.929
Bootstrap Non-nested LR Test (Eraker and Wang 2015)
LR 15.084 1.110 1.080 0.637 3.698 1.459 2.242 -
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -
Bootstrap Information Matrix Test (Horowitz 1994)
D 9.550 1.820 2.877 1.544 39.887 1.444 5.029 2.452
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.063



Table 4: Joint Estimation and Forecasting Results for VXFs
One-Factor Models Two-Factor Models

Transformed CIR Transformed OU Transformed BVOU
CIR CIREW CIRCEV CIRM2LN OUDO OUM2LN BVOUMS BVOUM2LN

� 4.717 3.047 3.396 1.917 3.925 2.560 74.990 7.966
(0.634) (0.547) (0.537) (0.077) (0.578) (0.061) (0.543) (0.187)

� 20.158 0.052 0.048 0.526 2.938 0 2.831 0
(0.906) (0.005) (0.005) (0.012) (0.051) - (0.042) -

� 4.666 0.291 0.199 1 0.975 1 1.138 2.349
(0.043) (0.003) (0.005) - (0.009) 0 (0.011) (0.022)

�� 0.828 0.481
(0.009) (0.013)

�� 0.178 0.817
(0.003) -


 1.517
(0.008)

� 1.575
-

� 0.012
-

w 0.799 0.842 0.688
(0.014) (0.018) (0.013)

�1 2.799 2.816 3.077
(0.011) (0.009) (0.008)

s1 0.376 0.332 0.429
(0.002) (0.005) (0.003)

�2 3.503 3.606 2.640
- - -

s2 0.231 0.428 0.167
- - -

�Q(&X) 1.324 0.692 1.274 0.574 1.342 1.421 -1.071 -1.025
(0.016) (0.020) (0.013) (0.025) (0.013) (0.018) (0.269) (0.021)

�Q(&�) 25.786 0.074 0.051 0.777 3.045 -0.030 -2.706 -0.180
(0.099) (0.002) (0.004) (0.018) (0.006) (0.009) (0.193) (0.020)

LL (�104) -3.547 -3.293 -3.328 -3.286 -3.396 -3.335 -3.124 -2.867
RMSPE 3.223 2.665 2.763 2.628 2.929 2.764 2.162 1.694
RMSPE(ALL) 1.992 2.164 2.079 2.222 1.998 2.113 1.220 0.925
RMSPE(1M) 0.978 1.315 1.217 1.374 1.083 1.301 1.108 0.574
RMSPE(3M) 1.593 2.063 1.884 2.132 1.690 1.958 0.732 0.713
RMSPE(5M) 2.195 2.420 2.308 2.482 2.197 2.325 1.097 0.957
RMSPE(7M) 2.750 2.624 2.634 2.675 2.666 2.631 1.729 1.293


