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Abstract

The paper characterizes the class of two-player social choice functions imple-

mentable in rationalizable strategies. We offer two equivalent conditions, Two-

Player Generalized Strict Maskin Monotonicity∗∗ and Partition Monotonicity.

Similar to Bergemann et al. (2011) and Xiong (2022), Two-Player Generalized

Strict Maskin Monotonicity∗∗ relies on the existence of a partition of the set of

states. However, Partition Monotonicity provides a construction for the parti-

tion.
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1. Introduction

The main objective of implementation theory is to study conditions under which we

can design a mechanism within which, at every state (of the world), the outcome of

players’ strategic interaction coincides with the outcome prescribed by a given social

choice function (SCF) for that state. Players’ strategic interaction is modeled via

game-theoretic solution concepts, each giving rise to a different notion of implemen-

tation.

Following Palfrey (2002), we can divide the implementation problem into two com-

ponents. The first component is incentive compatibility. The mechanism must be

devised so that players’ incentives give rise to an outcome that coincides with the

goal set by the SCF. The second component is uniqueness. The mechanism must be

devised so that players’ incentives never give rise to an outcome that does not coin-

cide with the goal set by the SCF. There is tension between these two components

when there are only two players (see, for instance, Hurwicz and Schmeidler (1978) and

Maskin (1999)) or when information is incomplete among players (see, for instance,

Jackson (1991), Oury and Tercieux (2012), and Jain and Lombardi (2022)). However,

incentive compatibility is not an issue when information is complete and there are

three or more players.1

The idea of Nash equilibrium is fundamental to much of economic theory. An

extensive literature on implementation theory assumes Nash equilibrium as the solu-

tion concept.2 However, Nash equilibrium relies on the assumption that each player

correctly predicts the strategic choices of his opponents. If players’ conjectures are

not correct and players’ rationality is common knowledge among players, then (corre-
1Information is complete when players preferences and possible outcomes are common knowledge

among all the players.
2Maskin (1999; circulated since 1977) shows that only Maskin monotonic SCFs are Nash imple-

mentable. He also shows that when there are three or more players, an SCF is Nash implementable
if it is Maskin monotonic and satisfies the condition of no veto-power. Full characterization results
for Nash implementation can be found, for example, in Moore and Repullo (1990), Dutta and Sen
(1991), Sjostrom (1991), Saijo et al. (1996), Saijo et al. (2007), Danilov (1992), Yamato (1992), and
Lombardi and Yoshihara (2013).
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lated) rationalizability (Brandenburger and Dekel (1987)) is the appropriate solution

concept.

In complete information environments with three or more players, Bergemann et al.

(2011) (BMT, henceforth) address this issue by studying implementation problems

in rationalizable strategies. In this setup, Xiong (2022) provides a necessary and

sufficient condition for the rationalizable implementation of SCFs. The condition is

referred to as Strict Event Monotonicity∗∗ (SEM∗∗, henceforth). Their conditions

offer powerful insights into ensuring that only outcomes consistent with the SCF are

implementable in rationalizable strategies.3

However, these studies have two significant limitations. First, since they study

rationalizable implementation in complete information environments with more than

two players, they avoid incentive compatibility issues arising in two-player cases. In-

centive compatibility issues make the two-player implementation problems harder

than the many-player problems. Second, although their constructive proofs employ

stochastic mechanisms, their necessary and sufficient conditions rely on the existence

of a partition of the set of states Θ. This feature contrasts with the Nash imple-

mentation literature, where stochastic mechanisms allow getting rid of the existential

clauses underlying the necessary and sufficient conditions for Nash implementation

(see, for instance, Bochet (2007), and Benoît and Ok (2008)).4 Finally, from a prac-

tical standpoint, their conditions are difficult to check as the number of partitions of

Θ grows exponentially with the size of Θ.5

3For multi-valued social choice correspondences, implementation in rationalizable strategies is
studied in Kunimoto and Serrano (2019) and Jain (2021). See Section 7 for more details.

4The existential clause also appears in the characterization offered in Jain (2021). For instance,
similar to BMTs condition, ΘF distinguishability of Jain (2021) relies on the existence of a partition
of the set of states Θ (see Definition 4.2, p,52.)

5In combinatorial mathematics, the number of partitions of a set of size n is referred to as bell
number. Bell numbers can be recursively defined as follows: B(1) = 1 and for every n+ 1,

B(n) =

n∑
k=0

(
n

k

)
B(k).
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Motivated by the above reasoning, the paper aims to answer two questions: What

SCFs can we implement if only two players exist? Can we provide a characterization

of rationalizable implementation that does not rely on any existential clause, irre-

spective of the number of players? We offer complete answers to these questions by

providing two equivalent characterizations. The first characterization is given using a

condition called Two-Player Generalized Strict Maskin Monotonicity∗∗ (2P-GSSM∗∗).

This condition is directly comparable with SEM∗∗. Similar to SEM∗∗, 2P-GSMM∗∗

also relies on an existential clause. The second characterization is obtained by using a

condition called Partition Monotonicity. This condition is equivalent to 2P-GSMM∗∗

but it does not rely on any existential clause.6

The study of two-player implementation problems has always been at the heart

of implementation theory. For instance, a classical impossibility result can be found

in Hurwicz and Schmeidler (1978) and Maskin (1999), which show that any Pareto-

optimal two-player multi-valued SCF that is Nash implementable is dictatorial if the

domain of preferences is unrestricted. Laslier et al. (2021)) provides a solution to this

classical problem by considering deterministic mechanisms only on the equilibrium

path. Moreover, the understanding of two-player problems has a bearing on a wide

variety of bilateral contracting and negotiating problems (Moore and Repullo (1988),

Moore and Repullo (1990), and Dutta and Sen (1991)). For instance, De Clippel

et al. (2014) studies the problem of the selection of arbitrators from the perspective

of implementation theory in a setting with complete information and no monetary

transfers. Note that arbitrator selection involves only two parties.

Seminal works on two-player Nash implementation are Moore and Repullo (1990),
6Xiong (2022) also provides a condition that is equivalent to SEM∗∗, which is referred to as

Strict Iterated Elimination Monotonicity (henceforth, SIEM). In contrast to SEM∗∗, SIEM embeds
the iterative logic of rationalizability into the implementing condition. Its main role is to clarify
the relationship between rationalizability and SEM∗∗. In environments with only two players, we
provide in Jain et al. (2021) an iterative implementing condition, termed Iterative Monotonicity.
Unlike 2P-GSMM∗∗, Iterative Monotonicity is not directly comparable with SEM∗∗ and SMM∗∗.
Finally, the underlying algorithm that defines Partition Monotonicity is much more transparent and
short than the algorithm that defines Iterative Monotonicity.
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Dutta and Sen (1991) and Sjostrom (1991). Moore and Repullo (1990) and Dutta

and Sen (1991) provide a full characterization of the class of Nash implementable

functions, whereas Sjostrom (1991) provides a constructive way of checking whether

or not an SCF can be implemented in Nash equilibria. Their condition comes from

recognizing that two-player implementation requires a mechanism to distinguish the

true state when the two players report distinct messages. Thus, any implementable

SCF needs to satisfy a two-player condition. The condition requires that a "punish-

ment outcome" exists when players report distinct messages. Moreover, it requires

that when the punishment outcome is a Nash equilibrium outcome at the true state,

it must be consistent with the SCF. The incentive compatibility issues that arise for

the two-player case do not have any bite in separable environments, that is, in en-

vironments with an outcome that, at every state, every player deems strictly worse

than the outcome prescribed by the SCF (see, for instance, Jackson (2001)). How-

ever, they have a bite in many important applications, such as in environments with

no monetary transfers or in classic exchange economies where free disposal is not

allowed.

The two-player condition for Nash implementation does not solve the incentive

compatibility issues that arise under rationalizability. The reason is that rationaliz-

ability imposes more stringent requirements than Nash equilibrium on selecting the

punishment outcome when the two players report distinct messages. Let f be the

goal of the designer. Suppose that the actual state is θ∗ but player 1 reports θ as the

actual state, and player 2 reports θ′. What outcome can be selected as a punishment

outcome when

SL1 (f (θ) , θ)
⋂

L2 (f (θ′) , θ′)

is empty? The two-player condition for Nash implementation allows us to choose

any outcome on the indifference curve of player 1 generated by f(θ) at θ. However,

rationalizable implementation forces us to select f(θ). The reason is that any other

point e of player 1’s indifference curve becomes a rationalizable outcome at θ but

6



e ̸= f(θ). This choice is problematic when the two distinct messages constitute a

Nash equilibrium at θ∗ and f(θ) ̸= f(θ∗). The reason is that the two distinct messages

constitute a bad Nash equilibrium. This bad Nash equilibrium is at the core of the

contextualizing example presented in Section 3, where we construct a two-player SCF

that is Nash implementable and satisfies BMT’s sufficient conditions for rationalizable

implementation. However, it is still not implementable in rationalizable strategies.

In addition, this example also sheds further light on the relationship between Nash

implementation and rationalizable implementation.7

Since f(θ) is to be implemented at θ but f(θ) ̸= f(θ∗), then f(θ) must fall in some-

one’s ranking at θ∗ to break the bad Nash equilibrium via some deviation. Therefore,

the two-player condition for rationalizable implementation must allow preference re-

versals in these situations to knock out unwanted rationalizable strategy profiles. As

discussed above, since the two-player condition for Nash implementation cannot help

solve two-player rationalizable implementation problems, we develop our solution in

the space of deceptions. Our condition is directly comparable with the BMT’s con-

dition and Xiong (2022)’s condition. Furthermore, it does not involve any event-wise

strict Maskin monotonicity condition. The reason is that in the two-player case, one

player never violates the condition of the no worst alternative (NWA), and the other

can violate NWA in some states.8 Therefore, pairwise comparisons between states

conducted in our strict Maskin monotonicity condition are sufficient in a setup where

NWA is almost satisfied. Our two-player implementing condition strengthens Xiong

(2022)’s condition. We present and discuss our implementing condition in Section 4
7BMT’s Proposition 2 (see Section II below) implies that in a complete information environment

with three or more players, if an SCF satisfies responsiveness and the so-called no-worst alternative
condition (NWA), then its Nash implementation is equivalent to its rationalizable implementation.
This equivalence result is a conceptual puzzle because the two solutions concepts are very different.
In a complete information environment with three or more players, Jain (2021) provide an example
showing that the equivalence breaks down when f violates responsiveness, but it satisfies NWA.
In the same environment, Xiong (2022) shows that it breaks down when f satisfies responsiveness
but violates NWA. Our example shows that the equivalence breaks down in a complete information
environment with two players, even when f satisfies responsiveness and NWA.

8NWA requires that a player never obtains his worst outcome under the SCF.
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and in Section 5. The complete characterization is presented in Section 5, whereas

the Appendix contains its proof.

Finally, the necessary and sufficient condition for Nash implementation in abstract

environments relies on the existence of certain sets. Thanks to Sjostrom (1991), when

we have three or more players, we have a constructive way of checking whether an

SCF can be implemented in Nash equilibria. In important papers, Bochet (2007)

and Benoît and Ok (2008) show that in environments with three or more players, the

necessary and sufficient conditions for Nash implementation simplify considerably by

using stochastic mechanisms. However, the situation is very different for rationalizable

implementation. The reason is that although the constructive proofs provided so far

for rationalizable implementation employ stochastic mechanisms, the necessary and

sufficient conditions rely on the existence of a partition of Θ.9

Our characterization result does not suffer from this drawback. Section 6 shows

how to construct the partition of Θ underlying our two-player implementing condi-

tion. The construction is very instructive because we can use a similar algorithm to

construct the partition underlying Xiong (2022)’s and Bergemann et al. (2011)’s con-

dition for functions, and that underlying Jain (2021)’s condition for correspondences.

Section 7 discusses how the characterization obtained for SCFs can be used to

derive sufficient conditions for the rationalizable implementation of social choice cor-

respondences studied in Jain (2021).

2. Setup

The environment consists of I = 2 players (we write I = {1, 2} for the set of players),

a finite set of states Θ and a countable set of pure outcomes X. Let Y ≡ ∆(X)

denote the set of lotteries over X. Player i’s preferences over lotteries are described
9Jain (2021) also shares this feature.
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by a utility function ui : Y ×Θ 7→ R, with

ui (y, θ) =
∑
x∈X

yxui (x, θ) ,

where yx is the probability of pure outcome x. For all θ ∈ Θ, ui (·, θ) satisfies the

expected utility hypothesis. To save writing, for all i ∈ I, we write −i for player i’s

opponent.

Given a state θ ∈ Θ, a player i ∈ I, and a lottery y ∈ Y , the lower contour set of

ui (·, θ) at y is Li (y, θ) = {y′ ∈ Y |ui (y, θ) ≥ ui (y
′, θ)}; the strict lower contour set of

ui (·, θ) at y is SLi (y, θ) = {y′ ∈ Y |ui (y, θ) > ui (y
′, θ)}; and the strict upper contour

set of ui (·, θ) at y is SUi (y, θ) = {y′ ∈ Y |ui (y
′, θ) > ui (y, θ)}.

A mechanism M is a pair M ≡ (M, g), where M ≡
∏
i∈I

Mi, with each Mi being a

nonempty countable set, and g : M −→ Y . As usual, we refer to Mi as the (pure)

strategy space of i ∈ I, to a member of M , denoted by m, as a (pure) strategy profile,

and to g as an outcome function. For all M ′ ⊆ M , let g [M ′] = {g (m) ∈ Y |m ∈ M ′}.

The environment, when combined with the mechanism, describes a game (of com-

plete information) for all state θ ∈ Θ, which is denoted by (M, θ). We will use (cor-

related) rationalizability as a solution concept. Bernheim (1984) and Pearce (1984)

provide a definition of rationalizability in which players’ conjectures over their op-

ponents’ play are independent. In this paper, we follow the convention of some of

the recent literature (e.g., Osborne and Rubinstein (1994) in using “rationalizability”

for the correlated version of rationalizability (we refer the reader to Brandenburger

and Dekel (1987)). Our definition of rationalizability coincides with the standard

definition when strategy spaces are compact. However, our definition allows for in-

finite, non-compact strategy spaces. In this case, our definition is equivalent to one

introduced by Lipman (1994).

Formally, let S be the set of all strategy-set profiles, defined by S ≡
∏
i∈I

Si, where

Si ≡ 2Mi for all i ∈ I, with S = (Si)i∈I as a typical profile of S. The family S is a
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lattice with the natural ordering of the set inclusion: S ≤ S ′ if Si ⊆ S ′
i for all i ∈ I.

The smallest element of S is denoted by S ≡ (∅, ..., ∅), whereas the largest element is

denoted by S̄ ≡ M .

Fix any game (M, θ). The strategy mi ∈ Mi is player i’s best-response to his belief

λi ∈ ∆(M−i) at θ if

mi ∈ arg max
m′

i∈Mi

∑
m−i∈M−i

λi (m−i)ui (g (m
′
i,m−i) , θ) .

By following Bergemann et al. (2011), let us define an operator bM,θ : S −→ S, where

bM,θ ≡
(
bM,θ
i

)
i∈I

and bM,θ
i : S −→ Si is defined, for all S ∈ S, by

bM,θ
i (S) =


there exists λmi,θ

i ∈ ∆(M−i) such that

mi ∈ Mi (1) λmi,θ
i (m−i) > 0 =⇒ m−i ∈ S−i,

(2) mi is a best response to λmi,θ
i at θ

 .

Note that bM,θ is increasing (that is, S ≤ S ′ =⇒ bM,θ (S) ≤ bM,θ (S ′).

By Tarski’s fixed point theorem, there exists a largest fixed point of bM,θ, which is

denoted by SM,θ. That is, (1) bM,θ
(
SM,θ

)
= SM,θ and (2) bM,θ (S) = S =⇒ S ≤

SM,θ. We refer to mi ∈ SM,θ
i as a player i’s rationalizable strategy in M at state θ,

and to a member of SM,θ as a rationalizable strategy profile in M at state θ.

We say that a profile S ∈ S has the best-response property in state θ if S ≤ bM,θ (S),

or equivalently, if for all i ∈ I and all mi ∈ Si, there exists λi ∈ ∆(M−i) such that

λi (m−i) > 0 =⇒ m−i ∈ S−i, and mi is a best-response to λi at θ. It can be checked

that S ≤ SM,θ when S has the best-response property in state θ.

A player i’s mixed-strategy σi is a probability distribution over Mi. The space of

player i’s mixed-strategies is denoted by Σi, where σi (mi) is the probability that σi

assigns to mi. The space of mixed-strategy profiles is denoted by Σ =
∏
i∈I

Σi, with

element σ as a typical strategy profile. A mixed-strategy may assign probability one

to a single strategy mi, that is, σi (mi) = 1. In this case, we refer to such a mixed-
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strategy as a (pure) strategy and denote it by mi. The support of a mixed-strategy

σi is the set of pure strategies that are played with positive probability, that is,

supp(σi) = {mi ∈ Mi|σi (mi) > 0}. A mixed-strategy profile σ is a Nash equilibrium

of (M, θ) if for all i ∈ I,

ui (g (σi, σ−i) , θ) ≥ ui (g (σ
′
i, σ−i) , θ) ,

for all σ′
i ∈ Σi. Write NE (M, θ) for the set of Nash equilibrium profiles of (M, θ),

and write g (NE (M, θ)) for the set of Nash equilibrium outcomes of (M, θ).

An SCF f is a function f : Θ −→ Y . To avoid trivialities, we focus on non-constant

SCFs.10

Definition 1. A mechanism M implements f : Θ −→ Y in rationalizable strategies

if for all θ ∈ Θ, SM,θ ̸= ∅ and m ∈ SM,θ =⇒ g (m) = f (θ). If such a mechanism

exists, f is said to be rationalizably implementable.

A partition of Θ is a correspondence P : Θ ⇒ Θ satisfying the following require-

ments: (i) θ ∈ P (θ) for all θ ∈ Θ, (ii) ∪θ∈ΘP (θ) = Θ, and (iii) P (θ) ∩ P (θ′) = ∅

if P (θ) ̸= P (θ′). Given an SCF f , Pf is the partition of Θ induced by f , that is,

Pf = {Θy}y∈f(Θ) where Θy = {θ ∈ Θ|f (θ) = y}. A partition P of Θ is at least as fine

as Pf , or equivalently, Pf is coarser than P if P (θ) ⊆ Pf (θ) for all θ ∈ Θ. Let Pf

denote the set of partitions that are at least as fine as Pf , that is,

Pf = {P |P is a partition of Θ such that P (θ) ⊆ Pf (θ) for all θ ∈ Θ} .

Let us call any map βi : Θ −→ 2Θ\ {∅} as player i’s deception. A special deception

for player i is the truth-telling deception, βt
i , defined by βt

i (θ) = {θ} for all θ ∈ Θ.

For any βi and β′
i, we write βi ⊆ β′

i if βi (θ) ⊆ β′
i (θ) for all θ ∈ Θ. Let Bt

i denote
10An SCF is constant if for all θ, θ′ ∈ Θ, f(θ) = f(θ′).
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the set of player i’s deceptions containing the truth-telling deception, that is,

Bt
i ≡

{
βi : Θ −→ 2Θ\ {∅}

∣∣∣βt
i ⊆ βi

}
. (1)

Let Bt ≡
∏
i∈I

Bt
i , with β = (βi)i∈I as a typical deception profile of Bt. For all β, β′ ∈ Bt,

we write β ⊆ β′ if βi ⊆ β′
i for all i ∈ I. The collection Bt is a complete lattice with the

natural ordering set inclusion: β ≤ β′ if β ⊆ β′. The largest element is β̄ = (Θ, ...,Θ).

The smallest element is βt.

BMT shows that Maskin monotonicity fully identifies the class of rationalizable

functions when there are three or more players and f satisfies the following two

auxiliary conditions.

Definition 2. f : Θ → Y satisfies NWA provided that for all θ ∈ Θ and all i ∈ I,

SLi (f (θ) , θ) ̸= ∅.

The condition requires that a player never obtains his worst outcome under the

SCF. The condition is due to Cabrales and Serrano (2011).

Definition 3. f : Θ 7→ Y is responsive provided that for all θ, θ′ ∈ Θ,

θ ̸= θ′ =⇒ f (θ) ̸= f (θ′) .

Responsiveness requires that the SCF “responds” to a change in the state with a

change in the socially optimal outcome.

Definition 4. f : Θ 7→ Y satisfies Maskin monotonicity provided that for all θ, θ′ ∈

Θ,

f (θ) ̸= f (θ′) =⇒ ∃i ∈ I : Li (f (θ) , θ)
⋂

SUi (f (θ) , θ′) ̸= ∅.

Maskin monotonicity states that in the case the socially optimal outcome differs

at θ and θ′, there exists a player i who, if the actual state is θ′ and all other players

12



claims that it is θ, could be offered a outcome y that would give him a strict incentive

to “announce” θ′, where y does not give any incentive when θ is the actual state.

BMT’s Proposition 2. (BMT, p.1261) Suppose that there are more than two

players. If f : Θ 7→ Y is responsive and it satisfies NWA and Maskin Mononotonicity,

then f is rationalizable implementable.

Among the three assumptions in BMT’s Proposition 2, Maskin monotonicity is

necessary. BMT propose ways to relax responsiveness while keeping NWA, and as-

suming more than two agents. To relax responsiveness, they introduce a strength-

ening of Maskin monotonicity, called strict Maskin monotonicity∗. Xiong (2022)

introduced a weakening of strict Maskin monotonicity∗, termed strict Maskin mono-

tonicity (SMM∗∗, henceforth), and he shows that SMM∗∗ is a necessary and sufficient

condition for rationalizable implementation when NWA is satisfied and there are more

than two players. His condition can be stated as follows.

Definition 5. f : Θ 7→ Y satisfies SMM∗∗ if there exists P ∈ Pf such that for all

(θ, θ′) ∈ Θ×Θ,

 ∀i ∈ I, ∃θ̂ ∈ P (θ) such that

SLi

(
f (θ) , θ̂

)
⊆ Li (f (θ) , θ′)

 =⇒ P (θ′) = P (θ) .

The condition is based on a partition P ∈ Pf and requires that that for any states

θ′ and θ, with P (θ′) ̸= P (θ), there exists a whistle-blower i who, at true state θ′, can

find for each θ̂ ∈ P (θ), a state-contingent blocking plan yθ̂ that works for this θ̂–that

is, yθ̂ ∈ SLi

(
f (θ) , θ̂

)
∩ SUi (f (θ) , θ′).

3. Contextualizing Example

In this section, we show through an example that the incentive compatibility issues

arising in the two-player rationalizable implementation problems are more severe than

those arising in the two-player Nash implementation problems. However, these issues
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do not have any bite in rationalizable implementation problems with three or more

players or in environments with an outcome that, at every state, every player deems

strictly worse than the outcome prescribed by the SCF (Jackson (2001)).

In particular, we construct a two-player SCF f such that (a) f satisfies all sufficient

conditions of BMT’s Proposition 2 except the requirement of three or more players; (b)

f is Nash implementable; and (c) f is not implementable in rationalizable strategies.

Let us present our example as follows. Suppose that X = {a, b, b′, c, d, e, f, g} and

Θ = {θ, θ′, θ′′}. Players’ utilities from pure outcomes are summarized in the table

below, where ε ∈
(
1
2
, 1
)
.

u1 (·, θ) u2 (·, θ) u1 (·, θ′) u2 (·, θ′) u1 (·, θ′′) u2 (·, θ′′)

a 1 − (1− ε) 1 −1 1 −1

b 0 0 0 0 0 0

b′ 0 0 0 0 0 0

c −1 1 − (1− ε) 1 −1 1

d 1 −2 −2 −1 1 −1

e 2 −(2− ϵ) 2 −2 −2 −2

f 3 −3 −3 −3 3 −3

g 0 0 0 0 −3 −3

The planner wants to implement f , which is defined over Θ by

f (θ) = {b}, f (θ′) = {b′} , and f (θ′′) = {a} .

Remark 1. The main feature of the example that will be used in the following claims

is that SL1 (f (θ) , θ) ∩ L2 (f (θ′) , θ′) = ∅. To see, it suppose that there exists z ∈

SL1 (f (θ) , θ)
⋂

SL2 (f (θ′) , θ′). Then, u1 (z, θ) < u1 (f (θ) , θ) = 0 and u2 (z, θ
′) <

u2 (f (θ′) , θ′) = 0, and so u1 (z, θ)+u2 (z, θ
′) < 0. However, since u1 (·, θ) = −u2 (·, θ′)

by construction, it follows that u1 (z, θ) + u2 (z, θ) = 0, which is a contradiction.
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We break the message of our example in three claims. The first claim can be stated

as follows.

Claim 1. f is responsive and it satisfies NWA and Maskin monotonicity.

Proof. It can be checked that f is responsive and it satisfies NWA. Moreover, it can

be checked that f satisfies Maskin monotonicity. Indeed, it can be checked that
1
2
a + 1

2
c ∈ L2 (f (θ′) , θ′) ∩ SU2 (f (θ′) , θ), 1

2
a + 1

2
c ∈ L1 (f (θ) , θ) ∩ SU1 (f (θ) , θ′),

1
2
a + 1

2
d ∈ L1 (f (θ′) , θ′) ∩ SU1 (f (θ′) , θ′′), e ∈ L1 (f (θ′′) , θ′′) ∩ SU1 (f (θ′′) , θ′), e ∈

L1 (f (θ′′) , θ′′) ∩ SU1 (f (θ′′) , θ) and 2
3
c+ 1

3
d ∈ L2 (f (θ) , θ) ∩ SU2 (f (θ) , θ′′). ■

When f satisfies NWA and stochastic mechanisms can be employed, it can be

shown that Moore and Repullo (1990)’s necessary and sufficient condition for Nash

implementation, called condition µ2, simplifies as follows.11

Definition 6. f : Θ 7→ Y satisfies condition µ2 provided that there exists e : Θ×Θ →

Y such that for all θ, θ′ ∈ Θ, (a) e (θ, θ′) = f (θ) if θ = θ′; (b) e(θ, θ′) ∈ L1 (f(θ
′), θ′)∩

L2 (f(θ), θ) if θ ̸= θ′; and (c) for all θ∗ ∈ Θ, f(θ∗) = e(θ, θ′) if

L1 (f (θ′) , θ′) ⊆ L1 (e (θ, θ
′) , θ∗) and L2 (f (θ) , θ) ⊆ L2 (e (θ, θ

′) , θ∗) . (2)

Part (b) of condition µ2 is a self-selection constraint due to incentive compatibility

issues. It requires that when players report different states, a feasible outcome exists

that can punish both players simultaneously. Part (a) of condition µ2 requires that

the punishment outcome is consistent with f when players report the same state. Part

(c) of condition µ2 states that if such a punishment outcome is a Nash equilibrium

outcome at θ∗, then it should be selected by f at θ∗. Note that part (c) of condition

µ2 implies Maskin monotonicity when θ = θ′. The challenge to satisfy condition µ2

consists in finding a feasible outcome e : Θ × Θ → Y such that parts (a)–(c) are

satisfied simultaneously.
11It can be checked that when f satisfies NWA, it is without loss of generality to verify condition

µ2 (condition β by Dutta and Sen (1991) or condition M2 of Sjostrom (1991)) under the specifications
that the set B = ∆(X) and Ci

(
f
(
θ̄
)
, θ̄
)
= Li

(
f
(
θ̄
)
, θ̄
)

for all i ∈ I.
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Claim 2. f satisfies condition µ2.

Proof. To see that f satisfies condition µ2, let the mapping e : Θ×Θ → Y be defined

as in Table 1, where the row player is player 1 and the column player is player 2.

θ θ′ θ′′

θ f (θ) 0.1d+ 0.9g g

θ′ g f (θ′) g

θ′′ 0.1c+ 0.9g 0.1d+ 0.9g f (θ′′)

Table I: e : Θ×Θ 7→ Y

It is clear from the construction of e(·, ·) that it satisfies part (a) of condition µ2.

To check part (b), we have to consider six cases reported in Table II, where θ1 is

player 1’s report and θ2 is player 2’s report. It can be checked that e(θ1, θ2) ∈

L1 (f(θ2), θ2) ∩ L2 (f(θ1), θ1) for all θ1, θ2 ∈ Θ with θ1 ̸= θ2.

θ1 θ2 e (θ1, θ2) u1 (e (θ1, θ2) , θ2) u1 (f (θ2) , θ2) u2 (e (θ1, θ2) , θ1) u2 (f (θ1) , θ1)

θ θ′ 0.1d+ 0.9g −0.2 0 −0.2 0

θ θ′′ g −3 1 0 0

θ′ θ g 0 0 0 0

θ′ θ′′ g −3 1 0 0

θ′′ θ 0.1c+ 0.9g −0.1 0 −2.6 −1

θ′′ θ′ 0.1d+ 0.9g −0.2 0 −2.8 −1

Table II: Part (b)
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θ θ′ θ′′

e (θ, θ′) = 0.1d+ 0.9g

u1 (f (θ′) , θ′) ≥ u1 (d, θ
′) u1 (f (θ′) , θ′) ≥ u1 (g, θ

′) u1 (f (θ′) , θ′) ≥ u1 (d, θ
′)

u1 (d, θ) > u1 (e (θ, θ
′) , θ) u1 (g, θ

′) > u1 (e (θ, θ
′) , θ′) u1 (d, θ

′′) > u1 (e (θ, θ
′) , θ′′)

e (θ, θ′′) = g

u1 (f (θ′′) , θ′′) ≥ u1 (e, θ
′′) u1 (f (θ′′) , θ′′) ≥ u1 (e, θ

′′) u1 (f (θ′′) , θ′′) ≥ u1 (d, θ
′′)

u1 (e, θ) > u1 (e (θ, θ
′′) , θ) u1 (e, θ

′) > u1 (e (θ, θ
′′) , θ′) u1 (d, θ

′′) > u1 (e (θ, θ
′′) , θ′′)

e (θ′, θ) = g

u2 (f (θ′) , θ′) ≥ u2

(
2
3
c+ 1

3
e, θ′

)
u1 (f (θ′) , θ′) ≥ u1

(
1
2
a+ 1

2
c, θ′

)
u1 (f (θ) , θ) ≥ u1 (c, θ)

u2

(
2
3
c+ 1

3
e, θ

)
> u2 (e (θ

′, θ) , θ) u1

(
1
2
a+ 1

2
c, θ′

)
> u1 (e (θ

′, θ) , θ′) u1 (c, θ
′′) > u1 (e (θ

′, θ) , θ′′)

e (θ′, θ′′) = g

u1 (f (θ′′) , θ′′) ≥ u1 (e, θ
′′) u1 (f (θ′′) , θ′′) ≥ u1 (e, θ

′′) u1 (f (θ′′) , θ′′) ≥ u1 (d, θ
′′)

u1 (e, θ) > u1 (e (θ
′, θ′′) , θ) u1 (e, θ

′) > u1 (e (θ
′, θ′′) , θ′) u1 (d, θ

′′) > u1 (e (θ
′, θ′′) , θ′′)

e (θ′′, θ) = 0.1c+ 0.9g

u1 (f (θ) , θ) ≥ u1 (g, θ) u1 (f (θ) , θ) ≥ u1 (c, θ) u1 (f (θ) , θ) ≥ u1 (c, θ)

u1 (g, θ) > u1 (e (θ
′′, θ) , θ) u1 (c, θ

′) > u1 (e (θ
′′, θ) , θ′) u1 (c, θ

′′) > u1 (e (θ
′′, θ) , θ′′)

e (θ′′, θ′) = 0.1d+ 0.9g

u1 (f (θ′) , θ′) ≥ u1 (d, θ
′) u1 (f (θ′) , θ′) ≥ u1 (g, θ

′) u1 (f (θ′) , θ′) ≥ u1 (d, θ
′)

u1 (d, θ) > u1 (e (θ
′′, θ′) , θ) u1 (g, θ

′) > u1 (e (θ
′′, θ′) , θ′) u1 (d, θ

′′) > u1 (e (θ
′′, θ′) , θ′′)

Table III: Part (c)
Finally, let us check that f satisfies part (c) of condition µ2. Since f satisfies Maskin

monotonicity by Claim 1, we need to check that f satisfies part (c) of condition µ2

for the cases where the punishment outcome e(θ1, θ2) is given by θ1 ̸= θ2. Since

Θ = {θ, θ′, θ′′}, there are six cases to be checked for each possible state in Θ, which

are reported in Table III. For example, when player 1 reports θ and player 2 reports

θ′, the punishment outcome is e(θ, θ′) = 0.1d+0.9g, as reported in Table I and in the

second row of Table III. Suppose that the actual state is θ. Then, since f(θ) ̸= f(θ′),

to satisfy part (c) of condition µ2 for e(θ, θ′) = 0.1d+0.9g, Table 3 states that outcome
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d is such that d ∈ L1 (f (θ′) , θ′) ∩ SU1 (e (θ, θ
′) , θ)—see the box corresponding to the

third row and the first column of Table III. ■

Though f is Nash implementable and satisfies responsiveness, NWA and Maskin

monotonicity, our next claim shows that f is not rationalizable implementable.

Claim 3. f is not rationalizably implementable.

Proof. Assume, to the contrary, that there exists a mechanism M that implements

f in rationalizable strategies. For each state θ̄ ∈ Θ, let SM,θ̄ =
∏
i∈I

SM,θ̄
i be the set

of rationalizable strategy profiles for the game
(
M, θ̄

)
. Since for each θ, SM,θ ̸=

∅, it follows that for each i ∈ I, there exists λθ
i ∈ ∆(SM,θ

−i ) such that SM,θ
i =

argmax
m′

i

∑
m−i

λθ
i (m−i)ui(g(m

′
i,m−i), θ) ̸= ∅.

Since M rationalizable implements f , it follows that for each (m1,m2) ∈ SM,θ′

1 ×

SM,θ
2 , it holds that g (m1,m2) ∈ L1(f(θ), θ)

⋂
L2(f(θ

′), θ′). Since SL1 (f (θ) , θ) ∩

L2 (f (θ′) , θ′) is empty, by construction, it follows that if g (m1,m2) ̸= f(θ), then

g (m1,m2) becomes a rationalizable outcome at θ, yielding a contradiction. Thus,

by rationalizable implementation, it must be the case that g (m1,m2) = f (θ). Since

L1 (f (θ) , θ) ⊆ L1 (f (θ) , θ′′), by construction, it holds that

SM,θ′

1 ⊆ argmax
∑

m2∈M2

λθ
1(m2)u1(g(m1,m2), θ

′′) ̸= ∅. (3)

Similarly, since L2 (f (θ) , θ′) ⊆ L2 (f (θ) , θ′′), by construction, it holds that

SM,θ
2 ⊆ argmax

∑
m1∈M1

λθ′

2 (m1)u2(g(m2,m1), θ
′′) ̸= ∅. (4)

Thus, we have that SM,θ
1 × SM,θ′

2 ⊆ SM,θ′′ . Since M implements f in rationalizable

strategies, it follows that f (θ) = f (θ′′), which is a contradiction. ■

From the arguments provided in the proof of Claim 3, it is clear that rationalizable

implementation imposed more restrictions than Nash implementation in selecting the
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punishment outcome. Indeed, when player 1 reports θ′ and player 2 reports θ, Nash

implementation allowed us to select g as a punishment outcome and so to satisfy

part (c) of condition µ2. However, this option is not available in the case of ratio-

nalizable implementation. The reason is that SL1 (f (θ) , θ) ∩ L2 (f (θ′) , θ′) is empty

and rationalizable implementation forced us to select f(θ) as a punishment outcome.

Therefore, any necessary condition for two-player rationalizable implementation needs

to select as a punishment outcome f(θ) when player 1 reports θ′ and player 2 reports

θ and SL1 (f (θ) , θ)∩L2 (f (θ′) , θ′) is empty. One such condition can be obtained by

strengthening condition µ2 of Definition 6 as follows.

Definition 7. f : Θ 7→ Y satisfies strong condition µ2 provided that there exists

e : Θ × Θ → Y such that for all θ, θ′ ∈ Θ, (a) e (θ′, θ) = f (θ) if either θ = θ′ or

θ ̸= θ′ and SL1 (f (θ) , θ) ∩ L2 (f (θ′) , θ′) = ∅; (b) e(θ′, θ) ∈ L1 (f(θ), θ) ∩ L2 (f(θ
′), θ′)

if θ ̸= θ′ and SL1 (f (θ) , θ)∩L2 (f (θ′) , θ′) ̸= ∅; and (c) for all θ∗ ∈ Θ, f(θ∗) = e(θ′, θ)

if

L1 (f (θ) , θ) ⊆ L1 (e (θ
′, θ) , θ∗) and L2 (f (θ′) , θ′) ⊆ L2 (e (θ

′, θ) , θ∗) . (5)

When f satisfies condition strong µ2, the punishment function e : Θ × Θ → Y

induces the following set-valued deception β : Θ → Θ×Θ defined by

β(θ̄) ≡ e−1(f(θ̄)) (6)

for all θ̄ ∈ Θ. In other words, for each θ̄ ∈ Θ, β identifies profiles of states (θ, θ′) that

are outcome equivalent to f(θ̄) according to the punishment function e : Θ×Θ → Y .

Clearly, the deception identified by condition µ2 can be a proper subset of that

identified by strong condition µ2. To see it, observe that in our example the deception

induced by strong condition µ2 includes pair of states (θ′, θ) such that θ′ ̸= θ, whereas

the deception induced by condition µ2 includes pair of states (θ′, θ) such that θ′ = θ.

The language of deceptions allows us to formulate the constraints that arise due

to rationalizable implementation beyond those arising from condition µ2. Our two-
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player implementing condition builds on this insight, and it is defined on the space of

deceptions. Moreover, since we are using rationalizability as a solution concept, the

deception β has a product structure—i.e., β(θ̄) = β1(θ̄)×β2(θ̄), for every θ̄ ∈ Θ. The

next section formalizes our implementing condition.12

4. Two-Player Generalized Maskin Monotonicity∗∗ (2P-GSMM∗∗)

In this section, we present our implementing condition and relate it to Xiong (2022)’s

implementing condition.

What prevented us from rationalizably implementing the two-player SCF presented

in the previous section was the fact that the intersection SL1 (f (θ) , θ)∩L2 (f (θ′) , θ′)

was empty. This implies that any necessary condition for two-player implementable

SCFs has to take care of these situations. We define below a deception βP
i , which

explicitly contemplates these situations.

For all i ∈ I and all P ∈ Pf , let us define βP
i : Θ → 2Θ\ {∅} by

βP
i (θ) = P (θ)

⋃⋃
θ′∈Θ

 P (θ′) ∃
(
θ̄, θ̂

)
∈ P (θ)× P (θ′)

SLi

(
f
(
θ̄
)
, θ̄
)⋂

L−i

(
f
(
θ̂
)
, θ̂
)
= ∅


 (7)

It is clear that βP ∈ Bt.

Based on the definition of the deception profile βP , we show below that f satisfies

a weakening of the nonempty lower intersection property due to Moore and Repullo

(1990). It is a weakening because it requires that for any states θ′, θ′′ ∈ Θ, the

intersection SLi(f(θ
′′), θ′′) ∩ SL−i(f(θ

′), θ′) is nonempty if (θ′, θ′′) /∈ βP
i

(
θ̄
)
× βP

−i

(
θ̄
)

for all θ̄ ∈ Θ. The property of Moore and Repullo (1990) requires that the intersection
12Traditionally, the idea of deceptions is used to study implementation problems with incomplete

information. However, even under the assumption of complete information, formulating the condition
in the space of deceptions has proved pivotal in characterizing social choice rules that are repeatedly
Nash implementable and in making the connection with static Nash implementation transparent.
For instance, Mezzetti and Renou (2017) show that dynamic monotonicity, a nontrivial but natural
generalization of Maskin monotonicity defined on the space of deceptions, is necessary and almost
sufficient for repeated Nash implementation.
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is nonempty for all (θ′, θ′′) ∈ Θ × Θ. Formally, we have the following intersection

property.

Lemma 1. For all P ∈ Pf and all (θ′, θ′′) ∈ Θ×Θ,

 (θ′, θ′′) /∈ βP
i

(
θ̄
)
× βP

−i

(
θ̄
)

∀θ̄ ∈ Θ

 =⇒ SLi (f (θ′′) , θ′′)
⋂
SL−i (f (θ′) , θ′) ̸= ∅.

Proof. Fix any (θ′, θ′′) such that (θ′, θ′′) /∈ βP
i

(
θ̄
)
× βP

−i

(
θ̄
)

for all θ̄ ∈ Θ. Assume, to

the contrary, that SLi (f (θ′′) , θ′′)
⋂
SL−i (f (θ′) , θ′) = ∅.

Since P (θ′′) ⊆ βP
−i (θ

′′), we obtain a contradiction if we show that P (θ′) ⊆ βP
i (θ′′).

Assume, to the contrary, that P (θ′) ⊈ βP
i (θ′′). By definition of βP

i , it follows that

SLi

(
f
(
θ̄
)
, θ̄
)⋂

L−i

(
f
(
θ̂
)
, θ̂
)
̸= ∅ for all

(
θ̄, θ̂

)
∈ P (θ′′)× P (θ′), and so

SLi (f (θ′′) , θ′′)
⋂

L−i (f (θ′) , θ′) ̸= ∅. (8)

Let us show that SL−i (f (θ′) , θ′) = ∅. Assume, to the contrary, that SL−i (f (θ′) , θ′) ̸=

∅. Take any x ∈ SL−i (f (θ′) , θ′). Since the intersection in (8) is also nonempty, take

any y ∈ SLi (f (θ′′) , θ′′)
⋂

L−i (f (θ′) , θ′). Let z = px + (1− p) y where p ∈ (0, 1).

Thus, for some p ∈ (0, 1), we have that z ∈ SLi (f (θ′′) , θ′′)
⋂
SL−i (f (θ′) , θ′), which

is a contradiction. Thus, SL−i (f (θ′) , θ′) = ∅. The definition of βP in (7) implies

that βP
−i(θ

′) = Θ. Thus, we have that (θ′, θ′′) ∈ βP
i (θ

′) × βP
−i(θ

′), which is a contra-

diction. ■

Remark 2. In environments with transfers or a common bad outcome, βP
i (θ) =

P (θ) for all i ∈ I, all P ∈ Pf and all θ ∈ Θ. Moreover, the nonempty lower

intersection property is always satisfied. This implies that the difficulty discussed in

the previous section disappears in environments with a common bad outcome, such

as in an environment with transfers.

To define our implementing condition, we need additional notation. For all E ∈

2Θ\ {∅}, let IE =
⋂

θ∈E Iθ where Iθ = {i ∈ I|SLi (f (θ) , θ) ̸= ∅}. Since we are
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focusing on non-constant SCFs, it follows from Xiong (2022) that IΘ ̸= ∅ if f is

rationalizably implementable. Thus, throughout the paper, we assume that player 1

always satisfies NWA, i.e., IΘ = {1}. Let

Θ(2) = {θ ∈ Θ|SL2(f(θ), θ) = ∅} (9)

denote the set of states for which player 2 violates NWA.

Based on Θ(2) and on P ∈ Pf , let us define ΘP . Let

ΘP =
⋃

θ∈Θ(2)

P (θ) (10)

Let us define the sequence {βP
k }k≥0 as follows. For all k ≥ 0, all i ∈ I and all θ ∈ ΘP ,

βP
i,k(θ) = βP

i (θ). (11)

For all k ≥ 0, all i ∈ I and all θ ∈ Θ̄P ≡ Θ \ΘP ,

βP
i,0(θ) = βP

i (θ)

and

βP
i,k (θ) =

 P (θ′) ⊆ Θ̄P ∃θ̄ ∈ Θ̄P such that

P (θ′) ⊆ βP
i,k−1

(
θ̄
)

and P (θ) ⊆ βP
−i,k−1

(
θ̄
)
.

 (12)

It can be checked that sequence {βP
k }k≥0 is an increasing converging sequence. Let

β∗P be the limit point of the sequence.

The implementing condition can be stated as follows:

Definition 8. f : Θ 7→ Y satisfies Two-Player Generalized SMM∗∗ (henceforth, 2P-

GSMM∗∗) if IΘ ̸= ∅ and there exists P ∈ Pf such that
⋂
i∈I

β∗P = P and the following

conditions are satisfied for all θ, θ′ ∈ Θ and all i ∈ I.
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1. Measurability:

f (θ) ̸= f (θ′) =⇒ β∗P (θ)
⋂

β∗P (θ′) = ∅.

2. β∗P -GSMM ∗∗:

 ∀i ∈ IP (θ′), ∃θ̂ ∈ β∗P
−i (θ) such that

SLi

(
f
(
θ̂
)
, θ̂
)
⊆ Li (f (θ) , θ′)

 =⇒ P (θ) = P (θ′) .

Measurability and β∗P -GSMM∗∗ are based on a common partition P . An SCF

f satisfies Measurability provided that for all θ, θ′ ∈ Θ, β∗P (θ) ∩ β∗P (θ′) is empty

whenever f(θ) ̸= f(θ′). When f satisfies Measurability, β∗P allows us to pin down

the partition of Θ required to rationalizable implement f .

β∗P -GSMM∗∗ is an extension of SMM∗∗ to our framework with deceptions. For

example, under NWA, it requires that for any states θ′ and θ, with P (θ′) ̸= P (θ),

there exists a whistle-blower i who, at true state θ′, can find for each θ̂ ∈ β∗P
−i (θ), a

state-contingent blocking plan yθ̂ that works for this θ̂–that is, yθ̂ ∈ SLi

(
f (θ) , θ̂

)
∩

SUi (f (θ) , θ′). In contrast to β∗P -GSMM∗∗, SMM∗∗ requires the existence of a

whistle-blower i who, at true state θ′, for each θ̂ ∈ P (θ)–rather than for each

θ̂ ∈ β∗P
−i (θ), can find a state-contingent blocking plan yθ̂ that works for this θ̂.

Remark 3. β∗P -GSMM∗∗ is stronger than SMM∗∗. The reason is that for all θ ∈ Θ,

it holds that P (θ) ⊆ β∗P
i (θ) for all i ∈ I. It is worth mentioning here that the SCF

presented in Section 3 violates β∗P -GSMM∗∗, though it satisfies SMM∗∗.

Remark 4. A key feature that distinguishes the two-agent case from the three or

more agent case is the fact that for any pair (θ, θ′), it is possible that SLi (f (θ) , θ)∩

L−i (f (θ′) , θ′) is empty, although Li (f (θ) , θ)∩L−i (f (θ′) , θ′) is non-empty. The def-

inition of βP is fundamentally based on this feature. However, there can be environ-

ments such that for any pair (θ, θ′), it is possible that SLi (f (θ) , θ)∩SL−i (f (θ′) , θ′)
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is nonempty. This is the case in an environment with universal bad outcomes, which

has been recently studied by Chen et al. (2021). In these settings, we have that for

all i ∈ I and all θ ∈ Θ, βP
i (θ) = P (θ), and hence 2P-GSMM∗∗ is equivalent to SMM∗∗

under NWA.

Remark 5. Both β∗P -GSMM∗∗ and SMM∗∗ require the existence of a fixed point.

To see this, β∗P -GSMM∗∗ can equivalently be written as

P (θ′) =
⋃
θ∈Θ

 P (θ) for all i ∈ IP (θ′), ∃θ̂ ∈ β∗P
−i (θ) such that

SLi

(
f
(
θ̂
)
, θ̂
)
⊆ Li (f (θ) , θ′)

 . (13)

Based on this observation, in Section 6, we define a new condition called Partition

monotonicity. This condition relies on a recursive sequence defined on the space of

partition Pf that converges to the partition required to satisfy 2P-GSMM∗∗.

It is worth mentioning that Measurability is a measurability-type condition, which

is reminiscent of the classical Abreu–Matsushima measurability (Abreu and Mat-

sushima, 1992), which is based on the limit of a recursive sequence.13

5. A Full Characterization

In this section, we prove that the class of rationalizably implementable SCFs coincides

with the class of SCFs satisfying 2P–GSMM∗∗.

Theorem 1. f : Θ 7→ Y is rationalizably implementable if and only if it satisfies

2P-GSMM∗∗.

Proof. See Appendix A and Appendix B. ■
13Abreu and Matsushima (1992) proposed a measurability condition, now referred to as Abreu–

Matsushima measurability, to characterize virtual rationalizable implementation when there is in-
complete information.
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5.1. Connecting 2P-GSMM∗∗ with Xiong (2022)’s implementing condition

Xiong (2022) shows that rationalizable implementation of an SCF is equivalent to

the Strict Event monotonicity∗∗ (SEM∗∗, henceforth) when there are three or more

players. The condition contains two axioms, SEM and Dictator Monotonicity (DM),

that are based on a common partition P ∈ Pf . SEM is a strengthening of SMM∗∗.

His condition can be stated as follows for the two-player case.

Definition 9. f : Θ 7→ Y satisfies Two-Player SEM∗∗ (2P-SEM∗∗, henceforth) if

there exists P ∈ Pf such that for all θ, θ′ ∈ Θ,

 ∀i ∈ IP (θ′), ∃θ̂ ∈ P (θ) such that

SLi

(
f (θ) , θ̂

)
⊆ Li (f (θ) , θ′)


︸ ︷︷ ︸

PART A: SEM

∨

 IP (θ) = {i}, ∃θ̂ ∈ Θ such that

Li

(
f
(
θ̂
)
, θ̂
)
⊆ Li (f (θ) , θ′)


︸ ︷︷ ︸

PART B: DM

=⇒ P (θ′) = P (θ) .

Part A is the premises of SEM, while Part B is the premises of DM.

SEM requires that for any θ and θ′, with P (θ′) ̸= P (θ), there exists a whistle-

blower i who, at true state θ′, can find for each θ̂ ∈ P (θ), a state-contingent blocking

plan yθ̂ that works for this θ̂–that is, yθ̂ ∈ SLi

(
f (θ) , θ̂

)
∩ SUi (f (θ) , θ′). Note that

SEM requires the whistle-blower i be an active player in IP (θ′)—i.e., i ∈ IP (θ′). In

contrast to SMM∗∗, SEM requires that player i must be an active player in IP (θ′).

Under NWA, SEM is equivalent to SMM∗∗.

DM requires that at the true state θ′ if player i reports θ when he is a dictator–

that is, he is the only one active player in IP (θ) = {i}, while the opponent reports

θ̂, and P (θ) ̸= P (θ′), then player i can be the only whistle-blower who must have a

blocking plan y that must be credible, i.e., y ∈ Li

(
f
(
θ̂
)
, θ̂
)
, and strictly profitable,

i.e., y ∈ SUi (f (θ) , θ′), when the state moves from θ̂ to θ′.

Remark 6. β∗P–GSMM∗∗ is a strengthening of 2P-SEM∗∗. β∗P–GSMM∗∗ implies

DM. Let its premised be satisfied. Then, suppose that IP (θ) = {i} and that ∃θ̂ ∈

Θ such that Li

(
f
(
θ̂
)
, θ̂
)

⊆ Li (f (θ) , θ′). The statement follows because by (7),
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βP
−i(θ) = Θ, and βP

−i ⊆ β∗P
−i , by construction. Furthermore, β∗P–GSMM∗∗ implies

SEM. This statement follows by the fact that P (θ) ⊆ β∗P
i (θ) for all i ∈ IP (θ′).

Given the discussion provided in the above remark and the example discussed in

Section 3, we state without proving that our two-player implementation condition is

strictly stronger than 2P-SEM∗∗.

Theorem 2. If f : Θ 7→ Y satisfies 2P-GSMM∗∗, then it satisfies 2P-SEM∗∗. The

converse implication is false.

6. Endogenizing Partitions For Two-Player Problems

This section shows how to construct the partition P in our implementing condition.

We can use similar reasoning to construct the partition in Xiong (2022)’s implement-

ing condition.

Let us first connect our approach with that used by BMT. These authors discuss

the role of partition in their characterization result. In particular, they show that the

required partition must be as fine as Pf and as coarse as the partition obtained by

their Lemma 1, which BMT called "pairwise inclusion property" (see BMT, p. 1266,

for a discussion). However, BMT also argues that this property cannot pin down the

partition by stating:

We finally observe that the partition P may yet have to be coarser than is

indicated by the pairwise inclusion property (BMT, p. 1266).

In what follows, we formalize the approach of BMT and extend it to a two-player

case. To this end, we need additional notation.

For all θ ∈ Θ, let P t (θ) = {θ}. It is clear that P t ∈ Pf . For all θ′ ∈ Θ, let the

sequence
{
P ℓ

}
ℓ≥0

be defined iteratively as follows. Let

P 0 (θ′) = P t (θ′) , (14)

and, for all ℓ− 1 ≥ 0 such that P ℓ−1 ∈ Pf , let P ℓ(θ′) as follows.

26



1. For all odd positive integer ℓ > 0,

P ℓ(θ′) =
⋂
i∈I

β∗P ℓ−1

i (θ′) (15)

2. For all even positive integer ℓ > 0,

P ℓ (θ′) =
⋃
θ∈Θ

 P ℓ−1(θ) for all i ∈ IP ℓ−1(θ′), ∃θ̂ ∈ β∗P ℓ−2

−i (θ) such that

SLi

(
f
(
θ̂
)
, θ̂
)
⊆ Li (f (θ) , θ′).


(16)

Suppose that the sequence
{
P ℓ

}
ℓ≥0

is such that P ℓ ∈ Pf for all ℓ ≥ 0. Then,

P ℓ ⊆ P ℓ+1 for all ℓ ≥ 0. Since the sequence is increasing and Θ is finite, the limit of

the sequence exists—that is, there exists ℓ∗ such that P ℓ = P ℓ∗ for all ℓ ≥ ℓ∗. Let us

denote the limit of
{
P ℓ

}
ℓ≥0

by P ∗ when the sequence
{
P ℓ

}
ℓ≥0

is such that P ℓ ∈ Pf

for all ℓ ≥ 0.

The following lemmata will be useful for our endogenization.

Lemma 2. For all P ∈ Pf , all i ∈ I, all k ≥ 0, and all θ, θ′ ∈ Θ, P (θ′) ⊆ βP
i,k(θ) if

P (θ′)
⋂

βP
i,k(θ) ̸= ∅.

Proof. Fix any P ∈ Pf , any i ∈ I and any θ, θ′ ∈ Θ. Take any k ≥ 0. Suppose that

P (θ′) ∩ βP
i,k (θ) ̸= ∅. Suppose that θ ∈ ΘP . Then, (11) implies that βP

i,k (θ) = βP
i (θ),

where βP
i (θ) is defined by (7). If θ = θ′, then (7) implies that P (θ′) ⊆ βP

i (θ).

Suppose that θ ̸= θ′. Since P (θ′) ∩ βP
i (θ) ̸= ∅, then there exists θ̃ ∈ P (θ′) ∩ βP

i (θ).

It follows from (7) that there exists θ̃∗ such that θ̃ ∈ P
(
θ̃∗
)

⊆ βP
i (θ). Since θ̃ ∈

P (θ′) ∩ P
(
θ̃∗
)
, it follows that P (θ′) = P

(
θ̃∗
)
, and so P (θ′) ⊆ βP

i (θ). Suppose

that θ ∈ Θ̄P . If k = 0, then βP
i,k (θ) ≡ βP

i (θ), and so P (θ′) ⊆ βP
i,k (θ), by the

preceding arguments. Suppose that k ̸= 0. Then, βP
i,k (θ) is defined by (12). Since

P (θ′) ∩ βP
i,k (θ) ̸= ∅, then there exists θ̃ ∈ P (θ′) ∩ βP

i,k (θ). It follows from (12) that

there exists θ̃∗ such that θ̃ ∈ P
(
θ̃∗
)
⊆ βP

i,k (θ). Again, since θ̃ ∈ P (θ′) ∩ P
(
θ̃∗
)
, it

follows that P (θ′) = P
(
θ̃∗
)
, and so P (θ′) ⊆ βP

i,k (θ). ■
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Lemma 3. Suppose that P ∈ Pf . For all ℓ ≥ 0, if P ℓ ⊆ P , then β∗P ℓ ⊆ β∗P .

Proof. Suppose that P ∈ Pf . Fix any ℓ ≥ 0 such that P ℓ ⊆ P . Let us proceed by

induction. It follows from (7) that βP ℓ

0 ⊆ βP
0 . Suppose that βP ℓ

k ⊆ βP
k for some k ≥ 0.

Let us show that βP ℓ

k+1 ⊆ βP
k+1. Fix any i ∈ I and any θ, θ′ such that θ′ ∈ βP ℓ

i,k+1 (θ).

We show that θ′ ∈ βP
i,k+1 (θ). The statement is obvious if SLi (f (θ) , θ) = ∅ because

βP ℓ

i,0 (θ) = Θ and βP ℓ

0 ⊆ βP
0 ⊆ β∗P . Otherwise, since θ′ ∈ βP ℓ

i,k+1 (θ), it follows from

(12) that there exists θ̄ ∈ Θ̄P ℓ such that P ℓ (θ′) ⊆ βP ℓ

i,k

(
θ̄
)

and P ℓ (θ) ⊆ βP ℓ

−i,k

(
θ̄
)
.

Since βP ℓ

k ⊆ βP
k , it follows that there exists θ̄ ∈ Θ̄P ℓ ⊆ Θ̄P such that P ℓ (θ′) ⊆ βP

i,k

(
θ̄
)

and P ℓ (θ) ⊆ βP
−i,k

(
θ̄
)
. Since P ℓ ⊆ P and P ∈ Pf , Lemma 3 implies that implies that

P (θ′) ⊆ βP
i,k

(
θ̄
)

and P (θ) ⊆ βP
−i,k

(
θ̄
)
. Thus, θ′ ∈ βP

i,k+1 (θ). The statement follows

by the principle of mathematical induction. ■

Based on β∗P ∗ , we say that f satisfies Measurability with respect to β∗P ∗ provided

that for all θ, θ′ ∈ Θ,

f (θ) ̸= f (θ′) =⇒ β∗P ∗
(θ)

⋂
β∗P ∗

(θ′) = ∅.

This allows us to define our second implementing condition.

Definition 10. f : Θ 7→ Y satisfies Partition Monotonicity (PM) provided IΘ ̸= ∅

that f satisfies Measurability with respect to β∗P ∗ .

We have the following alternative characterization of the class of two-player ratio-

nalizably implementable SCFs. The characterization has the advantage that it does

not rely on any existential clause.

Theorem 3. f : Θ 7→ Y satisfies PM if and only if f satisfies 2P-GSMM∗∗.

Proof. Suppose that f satisfies PM. Then IΘ ̸= ∅ and f satisfies Measurability with

respect to β∗P ∗ and
⋂
i∈I

β∗P ∗
i = P ∗. Let us show that f satisfies 2P-GSMM∗∗ with

respect to P ∗. Then, we need only to show that f satisfies β∗P ∗-GSMM∗∗. To this
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end, fix any θ, θ′ ∈ Θ. Suppose that for all i ∈ IP ∗(θ′), there exits θ̂ ∈ β∗P ∗
−i (θ) such

that SLi

(
f
(
θ̂
)
, θ̂
)
⊆ Li (f (θ) , θ′). We show that P ∗ (θ′) = P ∗ (θ). It follows from

(16) that P ∗(θ) ⊆ P ∗ (θ′). Since P ∗ ∈ Pf , we have that P ∗ (θ′) = P ∗ (θ). Thus, f

satisfies 2P-GSMM∗∗ with respect to P ∗.

For the converse, suppose that f satisfies 2P-GSMM∗∗ with respect to P =
⋂
i∈I

β∗P
i ∈

Pf . Then IΘ ̸= ∅. We show that f satisfies PM with respect to P ∗ ⊆ P . We show

this by showing that P ℓ ⊆ P and P ℓ ∈ Pf for all ℓ ≥ 0. Let us proceed by induction.

Clearly, P 0 = P t ⊆ P and P 0 = P t ∈ Pf . Then, suppose that there exists ℓ ≥ 0 such

that P ℓ ⊆ P and P ℓ ∈ Pf . Let us show that P ℓ+1 ⊆ P and P ℓ+1 ∈ Pf . We proceed

according to whether ℓ+ 1 is even or odd.

Case 1 : ℓ+ 1 is odd

Since ℓ + 1 is odd, P ℓ+1 =
⋂
i∈I

β∗P ℓ

i . Since P ℓ ⊆ P and P ∈ Pf , Lemma 3 implies

that β∗P ℓ ⊆ β∗P . Since P =
⋂
i∈I

β∗P
i , it follows that P ℓ+1 ⊆ P . Furthermore, since

P ℓ+1 ⊆ P and P ∈ Pf , we also have that P ℓ+1 ∈ Pf .

Case 2 : ℓ+ 1 is even

Fix any θ′ ∈ Θ. Suppose that θ ∈ P ℓ+1 (θ′). We show that θ ∈ P (θ′). Since

P ℓ ∈ Pf , it follows from definition of P ℓ+1 in (16) that for all i ∈ IP ℓ(θ′), there exists

θ̂ ∈ β∗P ℓ−1

−i (θ) such that SLi

(
f
(
θ̂
)
, θ̂
)
⊆ Li (f (θ) , θ′). Since P ℓ ⊆ P and P ℓ−1 ⊆ P ℓ,

we have that P ℓ−1 ∈ Pf . Lemma 3 implies that β∗P ℓ−1
(θ) ⊆ β∗P (θ). Thus, for all

i ∈ IP (θ′), there exits θ̂ ∈ β∗P
−i (θ) such that SLi

(
f
(
θ̂
)
, θ̂
)

⊆ Li (f (θ) , θ′). 2P-

GSMM∗∗ implies that P (θ) = P (θ′), and so θ ∈ P (θ′). Since θ and θ′ were arbitrary,

it follows that P ℓ+1 ⊆ P . Since P ℓ+1 ⊆ P and P ∈ Pf , it also follows that P ℓ+1 ∈ Pf .

By the principle of mathematical induction, we have that P ℓ ⊆ P for all ℓ ≥ 0. It

follows that P ∗ ⊆ P , and so β∗P ∗ ⊆ β∗P . Since f satisfies 2P–GSMM∗∗, it follows

that it satisfies Measurability with respect to β∗P . Since β∗P ∗ ⊆ β∗P , we have that f

satisfies Measurability with respect to β∗P ∗ . Thus, f satisfies PM. ■
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7. Concluding Remarks: Social Choice Correspondences

We restricted our attention to the study of SCFs. Let us briefly discuss the exten-

sion of the results to social choice correspondences (SCC). An SCC defines a set of

outcomes for each state, and rationalizability is a set-based solution concept. Jain

(2021) and Kunimoto and Serrano (2019) derive partial characterizations under differ-

ent notions of rationalizable implementation for SCCs in environments with complete

information and three or more players.

Using the characterization obtained for SCFs, Jain (2021), in his online appendix,

formulates a condition termed r-monotonicity∗∗. r-monotonicity∗∗ reduces to Maskin

monotonicity∗∗ when we focus on SCFs. Under NWA and in an environment with

more than three players, r-monotonicity∗∗ can be shown to be sufficient for ratio-

nalizable implementation of an SCC under (Jain (2021)’s notion of implementation.

Following Jain (2021)’s approach, it is straightforward to formulate a two-player suf-

ficient condition for rationalizable implementation of SCCs, which will reduce to 2P-

GSMM∗∗ for SCFs.

Although a complete characterization of the rationalizable implementation of SCCs

is beyond the scope of this paper, SEM∗∗ of Xiong (2022) and our 2P-GSMM∗∗ must

be a theoretical benchmark for any work focussing on rationalizable implementation of

SCCs. We conjecture that our framework of deceptions could help provide a complete

characterization of the rationalizable implementation of SCCs.

Appendices

A. Proof of "Only If" part of Theorem 1

Proof. Suppose that M rationalizable implements f . Since we are focusing on non-

constant SCFs, it follows from Xiong (2022) that IΘ ̸= ∅.14 Our proof is fundamen-

tally based on the deception profile β̂, where for all i ∈ I, β̂i : Θ 7→ 2Θ\ {∅} is defined
14See p. 36 of Xiong (2022) for details.
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by

β̂i (θ) =
{
θ̂ ∈ Θ|SM,θ̂

i ⊆ SM,θ
i

}
. (17)

Our proof is based on three steps. Step 1 shows that f satisfies 2P-GSMM∗∗ with

respect to β̂ and that
⋂

i∈I β̂i ∈ Pf . Step 2 shows that β∗P ⊆ β̂. Step 3 shows that⋂
i∈I β̂i =

⋂
i∈I β

∗P
i = P .

Step 1: f satisfies 2P-GSMM∗∗ with respect to β̂ and that
⋂

i∈I β̂i = P ∈ Pf .

To show that
⋂

i∈I β̂i = P ∈ Pf , let us first show that for all θ ∈ Θ,

⋂
i∈I

β̂i (θ) =
{
θ̂ ∈ Θ|SM,θ̂ = SM,θ

}
. (18)

Fix any θ ∈ Θ. It is clear from (17)-(18) that
{
θ̂ ∈ Θ|SM,θ̂ = SM,θ

}
⊆

⋂
i∈I β̂i (θ).

For the converse, suppose that θ̂ ∈
⋂

i∈I β̂i (θ). The equality in (18) holds if we

show that SM,θ̂ = SM,θ. By definition of β̂i, we have that SM,θ̂ ⊆ SM,θ. Since M

rationalizable implements f and since SM,θ̂ ⊆ SM,θ, Lemma 1 of Xiong (2022) (p.

19) implies that SM,θ̂ = SM,θ.

Let us show that
⋂

i∈I β̂i ∈ Pf . It is clear that θ ∈
⋂

i∈I β̂i (θ) for all θ ∈ Θ and that⋃
θ∈Θ

(⋂
i∈I β̂i (θ)

)
= Θ. Fix any θ, θ′ ∈ Θ. Suppose that

⋂
i∈I β̂i (θ) ̸=

⋂
i∈I β̂i (θ

′).

We show that
(⋂

i∈I β̂i (θ)
)⋂(⋂

i∈I β̂i (θ
′)
)

= ∅. Assume, to the contrary, that

there exists θ̂ ∈
(⋂

i∈I β̂i (θ)
)⋂(⋂

i∈I β̂i (θ
′)
)
. Then, by (18), SM,θ̂ = SM,θ and

SM,θ̂ = SM,θ′ , and so SM,θ = SM,θ′ . Since SM,θ
i = SM,θ′

i for all i ∈ I, (18) implies

that β̂i (θ) = β̂i (θ
′) for all i ∈ I, and so β̂ (θ) = β̂ (θ′). This implies that

⋂
i∈I β̂i (θ) =⋂

i∈I β̂i (θ
′), which is a contradiction. Therefore,

⋂
i∈I β̂i is a partition of Θ. Finally,

let us show that
⋂

i∈I β̂i (θ) ⊆ Pf (θ) for all θ ∈ Θ. Fix any θ ∈ Θ. Suppose

that θ̂ ∈
⋂

i∈I β̂i (θ). Then, (18) implies that SM,θ̂
i = SM,θ

i . Since M rationalizable

implements f and since SM,θ̂ = SM,θ, it follows that f (θ) = f
(
θ̂
)
, and so θ̂ ∈ Pf (θ).

Since the choice of θ ∈ Θ was arbitrary, we have that
⋂

i∈I β̂i ∈ Pf .

Let us show that f satisfies Measurability. Take any θ, θ′ ∈ Θ such that f (θ) ̸=
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f (θ′). We show that β̂ (θ)
⋂
β̂ (θ′) = ∅. Assume, to the contrary, that β̂ (θ)

⋂
β̂ (θ′) ̸=

∅. Then, there exists θ̂ ∈ β̂i (θ)
⋂

β̂i (θ
′) for all i ∈ I. It follows from (17) that

SM,θ
i

⋂
SM,θ′

i ̸= ∅ for all i ∈ I, and so SM,θ
⋂
SM,θ′ ̸= ∅. Since M rationalizable

implements f and since SM,θ
⋂

SM,θ′ ̸= ∅, it follows that f (θ) = f (θ′), which is a

contradiction.

Let us show that f satisfies β̂-GSMM∗∗. Take any θ, θ′ ∈ Θ. Let us proceed

according to whether IP (θ′) = I or IP (θ′) ̸= I.

Case 1 : IP (θ′) = I

Suppose that for all i ∈ I, there exists θ̂ (i) ∈ β̂−i (θ) such that SLi

(
f
(
θ̂ (i)

)
, θ̂ (i)

)
⊆

Li (f (θ) , θ′). We show that
⋂

i∈I β̂i (θ) =
⋂

i∈I β̂i (θ
′).

Fix any i ∈ I. Since θ̂ (i) ∈ β̂−i (θ), (17) implies that S
M,θ̂(i)
−i ⊆ SM,θ

−i . The

definition of SM,θ̂(i) and the fact that M implements f imply that there exists λθ̂(i)
i ∈

∆
(
S
M,θ̂(i)
−i

)
such that for all mi ∈ S

M,θ̂(i)
i , mi is a best-response to λ

θ̂(i)
i at θ̂ (i).15

Fix any mθ
i ∈ SM,θ

i . Let us show that mθ
i is a best-response to λ

θ̂(i)
i at θ′. Assume, to

the contrary, that there exists m̂i ∈ Mi such that

∑
m−i∈M−i

λ
θ̂(i)
i (m−i)ui (g (m̂i,m−i) , θ

′) >
∑

m−i∈M−i

λ
θ̂(i)
i (m−i)ui

(
g
(
mθ

i ,m−i

)
, θ′

)
.

(19)

Since M rationalizable implements f and since, moreover, λθ̂(i)
i ∈ ∆

(
S
M,θ̂(i)
−i

)
, SM,θ̂(i)

−i ⊆

15To see this, take any θ ∈ Θ and any i ∈ I. Since f is rationalizably implementable by M, it
follows that SM,θ ̸= ∅ and f (θ) = g (m) for all m ∈ SM,θ. Fix any mi ∈ SM,θ

i . Then, mi is a
best-response to some λmi,θ

i ∈ ∆
(
SM,θ
−i

)
at θ. Let λmi,θ

i = λθ
i . Fix any mθ

i ∈ SM,θ
i . Since f is

rationalizably implementable by M, we have that

ui (f (θ) , θ) =
∑

m−i∈M−i

λθ
i (m−i)ui

(
g
(
mθ

i ,m−i

)
, θ
)
≥

∑
m−i∈M−i

λθ
i (m−i)ui (g (mi,m−i) , θ)

for all mi ∈ Mi. Thus, mθ
i is a best-response to λθ

i at θ. Since the choice of mθ
i ∈ SM,θ

i is arbitrary,
the statement follows.
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SM,θ
−i and mθ

i ∈ SM,θ
i , it follows that

∑
m−i∈M−i

λ
θ̂(i)
i (m−i)ui

(
g
(
mθ

i ,m−i

)
, θ′

)
=

∑
m−i∈M−i

λ
θ̂(i)
i (m−i)ui (f (θ) , θ′) .

It follows from (19) that

∑
m−i∈M−i

λ
θ̂(i)
i (m−i)ui (g (m̂i,m−i) , θ

′) >
∑

m−i∈M−i

λ
θ̂(i)
i (m−i)ui (f (θ) , θ′) . (20)

Since for all mθ̂(i)
i ∈ S

M,θ̂(i)
i , mθ̂(i)

i is a best-response to λ
θ̂(i)
i at θ̂ (i), it follows that

∑
m−i∈M−i

λ
θ̂(i)
i (m−i)ui

(
g
(
m

θ̂(i)
i ,m−i

)
, θ̂ (i)

)
≥

∑
m−i∈M−i

λ
θ̂(i)
i (m−i)ui

(
g (m̂i,m−i) , θ̂ (i)

)
.

Moreover, since M rationalizable implements f , we have that

∑
m−i∈M−i

λ
θ̂(i)
i (m−i)ui

(
f
(
θ̂ (i)

)
, θ̂ (i)

)
≥

∑
m−i∈M−i

λ
θ̂(i)
i (m−i)ui

(
g (m̂i,m−i) , θ̂ (i)

)
.

(21)

(20) and (21) imply that SLi

(
f
(
θ̂ (i)

)
, θ̂ (i)

)
⊈ Li (f (θ) , θ′), which is a contradic-

tion. Therefore, for all mθ
i ∈ SM,θ

i , mθ
i is a best-response to λ

θ̂(i)
i at θ′. Moreover,

since λθ̂(i)
i ∈ ∆

(
S
M,θ̂(i)
−i

)
and since SM,θ̂(i)

−i ⊆ SM,θ
−i , it follows that λθ̂(i)

i (m−i) > 0 =⇒

m−i ∈ SM,θ
−i .

Since the choice of player i ∈ I was arbitrary, we have that for all i ∈ I, there

exists λi ∈ ∆(M−i) such that λi (m−i) > 0 =⇒ m−i ∈ SM,θ
−i , and for all mθ

i ∈ SM,θ
i ,

mθ
i is a best-response to λi at θ′. This implies that SM,θ ⊆ SM,θ′ . Lemma 1 of Xiong

(2022) (p. 19) implies that SM,θ = SM,θ′ . (18) implies that β̂ (θ) = β̂ (θ′), and so⋂
i∈I β̂i (θ) =

⋂
i∈I β̂i (θ

′). Thus, f satisfies β̂-GSMM∗∗.

Case 2 : IP (θ′) ̸= I

Then, IP (θ′) = {1}. Suppose that for some θ̂ ∈ β̂2(θ), it holds that
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SL1

(
f
(
θ̂
)
, θ̂
)
⊆ L1 (f (θ) , θ′) (22)

Arguing as in Case 1 above, we can see that SM,θ
1 ⊆ SM,θ′

1 . Moreover, since

IP (θ′) = {1} and since Θ = βP
2 (θ

′) ⊆ β̂2(θ
′), it holds that SM,θ

2 ⊆ SM,θ′

2 = M2.

Thus, SM,θ ⊆ SM,θ′ . Lemma 1 of Xiong (2022) (p. 19) implies that SM,θ = SM,θ′ .

(18) implies that β̂ (θ) = β̂ (θ′), and so
⋂

i∈I β̂i (θ) =
⋂

i∈I β̂i (θ
′). Thus, f satisfies

β̂-GSMM∗∗.

Step 2: β∗P ⊆ β̂.

The following result will be useful in proving this step.

Lemma 4. For all (θ, θ′) ∈ Θ × Θ̄P , all i ∈ I, and for all k ≥ 0, if f satisfies

Measurability with respect βP
k and P (θ) ⊆ βP

i,k (θ
′), then f (θ) = f(θ′).16

Proof. Let us proceed by induction over k ≥ 0.

Let k = 0. Fix any (θ, θ′) ∈ Θ × Θ̄P and any i ∈ I. Suppose that f satisfies

Measurability with respect βP
0 ≡ βP and P (θ) ⊆ βP

i (θ′). We show that f (θ) = f (θ′).

The proof is obvious if P (θ) = P (θ′). Thus, suppose that P (θ) ̸= P (θ′).

Since P (θ) ⊆ βP
i (θ′) and P (θ) ̸= P (θ′), the definition of βP

i implies that there

exist θ̄ ∈ P (θ′) and θ̂ ∈ P (θ) such that

SLi

(
f
(
θ̄
)
, θ̄
)
∩ L−i

(
f
(
θ̂
)
, θ̂
)
= ∅.

Let us first show that P (θ′) ⊆ βP
−i (θ). Assume, to the contrary, that P (θ′) ⊈ βP

−i (θ).

Then, for all
(
θ̄, θ̂

)
∈ P (θ′)× P (θ), it holds that

SL−i

(
f
(
θ̂
)
, θ̂
)
∩ Li

(
f
(
θ̄
)
, θ̄
)
̸= ∅.

It follows that there exists x ∈ SL−i

(
f
(
θ̂
)
, θ̂
)
∩ Li

(
f
(
θ̄
)
, θ̄
)

for all
(
θ̄, θ̂

)
∈

16Observe that this lemma does not rely on the assumption that f is rationalizably implementable.
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P (θ′) × P (θ). Since θ′ ∈ Θ̄P , it follows that P (θ′) ⊆ Θ̄P and thus, there exists

y ∈ SLi

(
f
(
θ̄
)
, θ̄
)

for all θ̄ ∈ P (θ′). Fix any
(
θ̄, θ̂

)
∈ P (θ′) × P (θ) and any

ε ∈ (0, 1). Let us define the lottery zε by zε = εx+ (1− ε) y. For ε small enough, we

have that

zε ∈ SLi

(
f
(
θ̄
)
, θ̄
)
∩ L−i

(
f
(
θ̂
)
, θ̂
)

,

which is a contradiction. Thus, P (θ′) ⊆ βP
−i (θ). Since P (θ) ⊆ βP

i (θ′), it follows from

definition of βP that P (θ) ⊆ βP
i (θ′) ∩ βP

i (θ). Similarly, since P (θ′) ⊆ βP
−i (θ), we

have that P (θ′) ⊆ βP
−i (θ) ∩ βP

−i (θ
′). Measurability with respect to βP implies that

f (θ) = f (θ′).

Inductive hypothesis : Suppose for some k ≥ 0, the following statement holds for all

(θ, θ′) ∈ Θ × Θ̄P and all i ∈ I: If f satisfies Measurability with respect to βP
k and

P (θ′) ⊆ βP
i,k (θ), then f (θ) = f (θ′).

Let us show that the statement holds for k + 1. Fix any (θ, θ′) ∈ Θ × Θ̄P and

any i ∈ I. Suppose that f satisfies Measurability with respect to βP
k+1 and that

P (θ′) ⊆ βP
i,k+1 (θ). We show that f (θ) = f (θ′). We proceed according to whether

P (θ′) ⊆ βP
i,k (θ) or not.

Suppose that P (θ′) ⊆ βP
i,k (θ). Since f satisfies Measurability with respect to βP

k+1

and since βP
k ⊆ βP

k+1, it follows that f satisfies Measurability with respect to βP
k . The

inductive hypothesis implies that f (θ) = f (θ′).

Suppose that P (θ′) ⊆ βP
i,k+1 (θ) but P (θ′) ̸⊆ βP

i,k (θ). Then, since P (θ′) ⊆

βP
i,k+1 (θ), it follows that there exists θ̄ ∈ Θ such that P (θ′) ⊆ βP

i,k

(
θ̄
)

and P (θ) ⊆

βP
−i,k

(
θ̄
)
. Since f satisfies Measurability with respect to βP

k+1 and since βP
k ⊆ βP

k+1, it

follows that f satisfies Measurability with respect to βP
k . Since P (θ′) ⊆ βP

i,k

(
θ̄
)
, it fol-

lows from our inductive hypothesis that f (θ′) = f
(
θ̄
)
. Again, since P (θ) ⊆ βP

−i,k

(
θ̄
)
,

it follows from our inductive hypothesis that f (θ) = f
(
θ̄
)
. We conclude that

f (θ) = f (θ′).

The principle of mathematical induction implies that the statement holds.
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Let us now complete the proof of Step 2. Recall that
⋂

i∈I β̂i = P . Let us proceed

by induction over k.

Initial Step, k = 0. Let us show that βP ⊆ β̂. Fix any θ ∈ Θ and any i ∈ I. Since⋂
i∈I β̂i ≡ P , it is clear that P (θ) ⊆ β̂i (θ) ∩ βP

i (θ). Then, take any θ′ ∈ Θ such

that P (θ) ̸= P (θ′). Suppose that P (θ′) ⊆ βP
i (θ). We show that P (θ′) ⊆ β̂i(θ). Since

P (θ′) ⊆ βP
i (θ), the definition of βP

i in (7) implies that SLi

(
f
(
θ̄
)
, θ̄
)⋂

L−i

(
f
(
θ̂
)
, θ̂
)
=

∅ for some
(
θ̄, θ̂

)
∈ P (θ) × P (θ′). Since M rationalizable implements f , it holds

that

g
[
SM,θ̂
i × SM,θ̄

−i

]
⊆ Li

(
f
(
θ̄
)
, θ̄
)⋂

L−i

(
f
(
θ̂
)
, θ̂
)

. (23)

Let us show that SM,θ̂
i ⊆ SM,θ̄

i . Assume, to the contrary, SM,θ̂
i ⊈ SM,θ̄

i . Then, there

exists mθ̂
i ∈ SM,θ̂

i such that mθ̂
i /∈ SM,θ̄

i . The definition of SM,θ̂ and the fact that M

implements f imply that there exists λθ̄
i ∈ ∆

(
SM,θ̄
−i

)
such that for all mθ̄

i ∈ SM,θ̄
i , mθ̄

i

is a best-response to λθ̄
i at θ̄.17 Since mθ̂

i ∈ SM,θ̂
i \SM,θ̄

i , it follows from (23) that there

exists mθ̄
−i ∈ SM,θ̄

−i such that g
(
mθ̂

i ,m
θ̄
−i

)
∈ SLi

(
f
(
θ̄
)
, θ̄
)
∩L−i

(
f
(
θ̂
)
, θ̂
)
, which is

a contradiction. Thus, we have that SM,θ̂
i ⊆ SM,θ̄

i . Since θ̄ ∈ P (θ), it follows from

(18) that SM,θ̂
i ⊆ SM,θ

i . Since θ̂ ∈ P (θ′), it follows from (18) that SM,θ̂
i ⊆ SM,θ

i for

all θ̂ ∈ P (θ′). It follows from (17) that P (θ′) ⊆ β̂i (θ).

Inductive hypothesis : Suppose that for some k ≥ 0, βP
k ⊆ β̂.

Let us show that βP
k+1 ⊆ β̂. Fix any θ ∈ Θ and any i ∈ I. Since

⋂
i∈I β̂i ≡ P , it is

clear that P (θ) ⊆ β̂i (θ) ∩ βP
i,k+1(θ). Then, take any θ′ ∈ Θ such that P (θ) ̸= P (θ′).

Suppose that P (θ′) ⊆ βP
i,k+1(θ). We show that P (θ′) ⊆ β̂i(θ). We proceed according

to whether P (θ′) ⊆ βP
i,k(θ) or not.

Suppose that P (θ′) ⊆ βP
i,k(θ). The inductive hypothesis implies that P (θ′) ⊆ β̂i(θ).

Thus, suppose P (θ′) ⊆ βP
i,k+1(θ) but P (θ′) ⊈ βP

i,k(θ). Then, θ ∈ Θ̄P and there

17See footnote 15.
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exists θ̄ ∈ Θ̄P such that P (θ′) ⊆ βP
i,k

(
θ̄
)

and P (θ) ⊆ βP
−i,k

(
θ̄
)
. The inductive

hypothesis implies that P (θ′) ⊆ β̂i

(
θ̄
)

and P (θ) ⊆ β̂−i

(
θ̄
)
. It follows from (17) that

SM,θ̂
i ×SM,θ

−i ⊆ SM,θ̄ for all θ̂ ∈ P (θ′). Since M rationalizable implements f , we have

that g
[
SM,θ̂
i × SM,θ

−i

]
= f

(
θ̄
)

for all θ̂ ∈ P (θ′). Since we have already shown that

f satisfies Measurability with respect to β̂ and since, moreover, it follows from the

inductive hypothesis that βP
k ⊆ β̂, we have that f satisfies Measurability with respect

to βP
k .

Since θ̄ ∈ Θ̄P and P (θ) ⊆ βP
−i,k

(
θ̄
)
, Lemma 4 implies that f (θ) = f

(
θ̄
)
, and so

g
[
SM,θ̂
i × SM,θ

−i

]
= f (θ) for all θ̂ ∈ P (θ′). Since M rationalizable implements f , it

follows that SM,θ̂
i ⊆ SM,θ

i for all θ̂ ∈ P (θ′). The definition of β̂i in (17) implies that

P (θ′) ⊆ β̂i (θ).

By the principle of mathematical induction, it follows that βP
k ⊆ β̂ for all k ≥ 0.

Since β∗P is the limit point of the sequence {βP
k }k≥0, we have that β∗P ⊆ β̂

Remark 7. In the above proof of Step 2, we did not distinguish between ΘP and

Θ̄P . Indeed, in proving that βP ⊆ β̂ we chose θ arbitrarily from Θ.

Remark 8. For all θ ∈ ΘP , it can easily be shown that βP (θ) = β̂(θ). To see this,

recall that when θ ∈ ΘP , it holds that βP
2 (θ) = Θ. Since βP

2 (θ) ⊆ β̂2(θ), by Step 2,

it holds that β̂2(θ) = Θ. Thus, βP
2 (θ) = β̂2(θ). To show that β̂1(θ) = βP

1 (θ), since we

have already proved that βP
1 (θ) ⊆ β̂1(θ), it suffices to show that β̂1(θ) ⊆ βP

1 (θ). Since

β̂1(θ) = P (θ) and β̂2(θ) = Θ, it holds that β̂1(θ) = P (θ) ⊆ βP
1 (θ).

Step 3:
⋂

i∈I β̂i =
⋂

i∈I β
∗P
i .

Since for all i ∈ I and all θ ∈ Θ, β∗P
i (θ) ⊆ β̂i (θ), it is clear that

⋂
i∈I β

∗P
i ⊆

⋂
i∈I β̂i.

Let us show that
⋂

i∈I β̂i ⊆
⋂

i∈I β
∗P
i . Fix any θ ∈ Θ. Suppose that θ′ ∈

⋂
i∈I β̂i (θ).

Since
⋂

i∈I β̂i ≡ P , it follows that θ′ ∈ P (θ). Since P (θ) ⊆ βP
i (θ) ⊆ β∗P

i (θ) for all

i ∈ I, we have that θ′ ∈
⋂

i∈I β
∗P
i (θ). Thus,

⋂
i∈I β̂i =

⋂
i∈I β

∗P
i .
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Since
⋂

i∈I β̂i =
⋂

i∈I β
∗P
i = P ∈ Pf and β∗P ⊆ β̂, it follows that f satisfies

2P-GSMM∗∗ with respect to P such that P =
⋂

i∈I β
∗P
i .

■

B. Proof of "If" part of Theorem 1

Suppose that f satisfies 2P-GSMM∗∗. The following allocation will be useful to define

the mechanism.

y =
1

2

1

|Θ|
∑
i∈I

∑
θ′∈Θ

yi (θ
′) (24)

where yi(θ
′) ∈ SLi(f(θ

′), θ′) if SLi(f(θ
′), θ′) ̸= ∅, otherwise, yi(θ′) ∈ Li(f(θ

′), θ′). For

all (θ′, θ′′) such that SLi (f (θ′′) , θ′′)
⋂
SL−i(f (θ′) ̸= ∅, let e(θ′, θ′′) be defined by

e(θ′, θ′′) = (1− ϵ)z(θ′, θ′′) + ϵy. (25)

where z(θ′, θ′′) ∈ SLi (f (θ′′) , θ′′)
⋂
SL−i(f (θ′) ̸= ∅ and ϵ > 0 is small enough such

that e(θ′, θ′′) ∈ SLi (f (θ′′) , θ′′)
⋂
SL−i (f (θ′) , θ′).

For all θ̄ ∈ Θ such that SLi(f(θ̄), θ̄) ̸= ∅, let us define xi(θ̄, θ̄) by

xi(θ̄, θ̄) = (1− ϵ)zi(θ̄) + ϵy (26)

where zi(θ̄) ∈ SLi(f(θ̄), θ̄). Since zi(θ̄) ∈ SLi(f(θ̄), θ̄), we can find an ϵ > 0 sufficiently

small such that xi(θ̄, θ̄) ∈ SLi(f(θ̄), θ̄).

To define the mechanism, we need to define more allocations. To this end, let us

define y
i
(θ) by

y
i
(θ) =

1

2

1

|Θ|

[∑
θ′∈Θ

y−i (θ
′) +

∑
θ′∈Θ\{θ}

yi (θ
′) + f(θ)

]
. (27)
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Lemma 5. For all i ∈ I and all θ ∈ Θ, there exists a function x̂θ
i : Θ → Y such

that for all θ̄ ∈ Θ, if SLi(f(θ), θ) ̸= ∅ and SLi(f(θ̄), θ̄) ̸= ∅, then ui(x̂
θ
i (θ̄), θ) >

ui(xi(θ̄, θ̄), θ) and x̂θ
i (θ̄) ∈ SLi(f(θ̄), θ̄).

Proof. Fix any i ∈ I and any θ ∈ Θ. Fix any θ̄ ∈ Θ. Suppose that SLi(f(θ), θ) = ∅

or SLi(f(θ̄), θ̄) = ∅. Then, let x̂θ
i (θ̄) = f(θ̄).

Assume that SLi(f(θ), θ) ̸= ∅ and SLi(f(θ̄), θ̄) ̸= ∅. Since yi(θ) ∈ SLi(f(θ), θ), it

holds that ui(yi(θ), θ) > ui(y, θ). Based on y
i
(θ), defined in (27), let us define x̂i(θ̄, θ)

by

x̂θ
i (θ̄) = (1− γ)zi(θ̄) + γy

i
(θ), (28)

where zi(θ̄) ∈ SLi(f(θ̄), θ̄) is used in (26) to define xi(θ̄, θ̄) and where γ > 0 is small

enough such that ui(x̂
θ
i (θ̄), θ) > ui(xi(θ̄, θ̄), θ) and x̂θ

i (θ̄) ∈ SLi(f(θ̄), θ̄). ■

Lemma 6. For all i ∈ I and all θ ∈ Θ, there exists a function x̃θ
i : Θ×Θ → Y such

that for all (θ′, θ̄) ∈ Θ × Θ, if SLi(f(θ), θ) ̸= ∅ and (θ′, θ̄) /∈ β∗P (θ∗) for all θ∗ ∈ Θ,

then ui(x̃
θ
i (θ

′, θ̄), θ) > ui(e(θ
′, θ̄), θ) and x̃θ

i (θ
′, θ̄) ∈ SLi(f(θ̄), θ̄).

Proof. Fix any i ∈ I and any θ ∈ Θ. Let us define x̃θ
i (θ

′, θ̄) for all (θ′, θ̄). Assume

that SLi(f(θ), θ) = ∅ or (θ′, θ̄) ∈ β∗P (θ∗) for some θ∗ ∈ Θ. Then, let x̃θ
i (θ

′, θ̄) = f(θ̄).

Otherwise, assume that SLi(f(θ), θ) ̸= ∅ and (θ′, θ̄) /∈ β∗P (θ∗) for all θ∗ ∈ Θ. Based

on y
i
(θ), let us define x̃θ

i (θ
′, θ̄) by

x̃θ
i (θ

′, θ̄) = (1− γ)e(θ′, θ̄) + γy
i
(θ). (29)

where e(θ′, θ̄) ∈ SLi(f(θ̄), θ̄) and it is defined in (25), and where γ > 0 is sufficiently

small such that ui(x̃
θ
i (θ

′, θ̄), θ) > ui(e(θ
′, θ̄), θ) and x̃θ

i (θ
′, θ̄) ∈ SLi(f(θ̄), θ̄). ■

Let Ŷ =
⋃
i∈I

⋃
θ∈Θ

y
i
(θ). Observe that Ŷ ̸= ∅. By Lemma 5, let us define the set

X̂ by X̂ = ∪i∈I ∪θ∈Θ ∪θ̄∈Θx̂
θ
i

(
θ̄
)
. Finally, by Lemma 6, let us define the set X̃ by

X̃ = ∪i∈I ∪θ∈Θ ∪(θ′,θ̄)∈Θ×Θx̂
θ
i

(
θ′, θ̄

)
. Since Θ is a finite set, it follows that Ŷ , X̂,
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and X̃ are finite sets as well. The following finite set will be used in defining the

mechanism. For every (i, θ̄, θ) ∈ I ×Θ×Θ, let Yi(θ̄, θ) be defined as follows:

Yi(θ̄, θ) =
{
f(θ̄)

⋃
Di(θ̄, θ)

}⋃{{
Ŷ ∪ X̂ ∪ X̃

}
∩ Li(f(θ̄), θ̄)

}
, (30)

where Di(θ̄, θ) is a finite subset of {y ∈ Y |y ∈ Li(f(θ̄), θ̄)
⋂
SUi(f(θ̄), θ)}. By con-

struction, it holds that Yi(θ̄, θ) ⊆ Li(f(θ̄), θ̄) and since f(θ̄) ∈ Yi(θ̄, θ), Yi(θ̄, θ) is

nonempty.18

Let us construct M = (M, g). Each i ∈ I plays a strategy mi = (m1
i ,m

2
i ), where

m1
i ∈ Θ, m2

i ∈ Z+. By construction, Mi = Θ × Z+ is a nonempty countable set for

player i. For all m ∈ M , the outcome g (m) is defined by the following rules.

Rule 0: If m1
1 ∈ ΘP and m2

1 = 0, then

g (m) = f
(
m1

1

)
.

Rule 1: If there exists θ̄ ∈ Θ̄P such that (m1
i )i∈I ∈ β∗P (

θ̄
)

and m2
i = 0 for all i ∈ I,

then

g (m) = f
(
θ̄
)
.

Rule 2: If m2
1 = m2

2 = 0 and (m1
i )i∈I /∈ β∗P (

θ̄
)

for all θ̄ ∈ Θ, then

g (m) = e
(
m1

i ,m
1
−i

)
,

18When the set of pure outcomes X is finite, it is without loss of generality to set Yi(θ̄, θ) ≡
Li(f(θ̄), θ̄), for every (i, θ̄, θ) ∈ I ×Θ×Θ.
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where e
(
m1

i ,m
1
−i

)
is defined in (25).

Rule 3: If Rule 0 does not apply and if for some θ̄ ∈ Θ,
(
m1

−i,m
2
−i

)
=

(
θ̄, 0

)
and

m2
i > 0, then

g (m) =

(
m2

1

m2
1 + 1

)
x̄i

(
θ̄, m1

i

)
+

(
1

m2
i + 1

)
xi

(
θ̄, θ̄

)
.

where x̄i

(
θ̄, m1

i

)
∈ argmax

y∈Yi(θ̄,m1
i )

ui(y,m
1
i ), Yi(θ̄, m

1
i ) is defined in (30), and xi

(
θ̄, θ̄

)
∈

SLi(f(θ̄), θ̄) is defined in (26).

Rule 4: In all other cases, an integer game is played: we identify a pivotal player i

by requiring that m2
i ≥ m2

−i, and that if m2
i = m2

−i, then i < −i. Then,

g (m) =

(
m2

i

m2
i + 1

)
y∗i (m

1
i ) +

(
1

m2
i + 1

)
y,

where y∗i (m
1
i ) ∈ argmax

y∈Ȳ
ui(y,m

1
i ) and where Ȳ be a finite subset of Y such that

∅ ≠ Ŷ ⊆ Ȳ .

Lemma 7. The outcome function g is well-defined.

Proof. To check that g is well-defined, we need only to check that Rule 1, Rule 2,

and Rule 3 are well-defined.

(A) Rule 1 is well-defined: Assume, to the contrary, that there exists m ∈ M falling

into Rule 1 such that for some θ̄, θ̄′ ∈ Θ̄P , (m1
i )i∈I ∈ β∗P (

θ̄
)

and m2
i = 0 for

all i ∈ I, (m1
i )i∈I ∈ β∗P (

θ̄′
)

and m2
i = 0 for all i ∈ I, and f

(
θ̄
)
̸= f

(
θ̄′
)
. Then,

m1
i ∈ β∗P

i

(
θ̄
)
∩ β∗P

i

(
θ̄′
)

for all i ∈ I, and so β∗P (
θ̄
)
∩ β∗P (

θ̄′
)
̸= ∅. Since f

satisfies Measurability, we have that f
(
θ̄
)
= f

(
θ̄′
)
, which is a contradiction.

(B) Rule 2 is well-defined: To see it, suppose that m is such that g(m) falls into

Rule 2. Lemma 8 below implies e
(
m1

i ,m
1
−i

)
∈ SLi(f(m

1
−i),m

1
−i)

⋂
SL−i(f(m

1
i ),m

1
i ).
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(C) Rule 3 is well-defined: To show it, we need to show that argmax
y∈Yi(θ̄,m1

i )

ui(y,m
1
i ) and

the lottery xi(θ̄, θ̄) ∈ SLi(f(θ̄), θ̄) exists. Since Yi(θ̄, m
1
i ) is a finite nonempty

set, argmax
y∈Yi(θ̄,m1

i )

ui(y,m
1
i ) exists.

To show that the lottery xi(θ̄, θ̄) ∈ SLi(f(θ̄), θ̄) exists, suppose that m is such

that g(m) falls into Rule 3. Suppose that i induces Rule 3 and m−i = (θ̄, 0).

Since we are in Rule 3, it holds that SLi(f(θ̄), θ̄) ̸= ∅. To see it, suppose that

i = 1. Then, since IΘ = {1}, by assumption, it follows that SL1(f(θ̄), θ̄) ̸= ∅.

Suppose that i = 2. Since m2
−i = 0 and Rule 3 applies, so that Rule 0 does

not apply, it is the case that m1
−i = θ̄ ∈ Θ̄P . Since Θ̄P ∩Θ(2) = ∅, it follows that

SL2(f(θ̄), θ̄) ̸= ∅. We conclude that SLi(f(θ̄), θ̄) ̸= ∅. Let us define xi(θ̄, θ̄) as

in (26), where zi(θ̄) ∈ SLi(f(θ̄), θ̄). Since zi(θ̄) ∈ SLi(f(θ̄), θ̄), we can find an

ϵ > 0 sufficiently small such that xi(θ̄, θ̄) ∈ SLi(f(θ̄), θ̄).

(D) Rule 4 is well-defined: This follows from the fact that Ȳ is a finite nonempty

set.

■

Lemma 8. (θ′, θ′′) /∈ β∗P
i

(
θ̄
)
× β∗P

−i

(
θ̄
)

∀θ̄ ∈ Θ

 =⇒
∃e (θ′, θ′′) ∈ Y as defined in (25) such that

e (θ′, θ′′) ∈ SLi (f (θ′′) , θ′′)
⋂
SL−i (f (θ′) , θ′).

Proof. Fix any (θ′, θ′′) such that (θ′, θ′′) /∈ β∗P
i

(
θ̄
)
× β∗P

−i

(
θ̄
)

for all θ̄ ∈ Θ. In partic-

ular, since βP ⊆ β∗P , (θ′, θ′′) /∈ βP
i

(
θ̄
)
× βP

−i

(
θ̄
)

for all θ̄ ∈ Θ.

We first show that SLi (f (θ′′) , θ′′)
⋂
SL−i (f (θ′) , θ′) ̸= ∅. Assume, to the contrary,

that

SLi (f (θ′′) , θ′′)
⋂

SL−i (f (θ′) , θ′) = ∅. (31)

Since P (θ′′) ⊆ βP
−i (θ

′′), we obtain a contradiction if we show that P (θ′) ⊆ βP
i (θ′′).
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Assume, to the contrary, that P (θ′) ⊈ βP
i (θ′′). By definition of βP

i , it follows that

SLi

(
f
(
θ̄
)
, θ̄
)⋂

L−i

(
f
(
θ̂
)
, θ̂
)
̸= ∅ for all

(
θ̄, θ̂

)
∈ P (θ′′)× P (θ′), and so

SLi (f (θ′′) , θ′′)
⋂

L−i (f (θ′) , θ′) ̸= ∅. (32)

Let us show that SL−i (f (θ′) , θ′) = ∅. Assume, to the contrary, that SL−i (f (θ′) , θ′) ̸=

∅. Take any x ∈ SL−i (f (θ′) , θ′). Since the intersection in (32) is also nonempty, take

any y ∈ SLi (f (θ′′) , θ′′)
⋂

L−i (f (θ′) , θ′). Let z = px + (1− p) y where p ∈ (0, 1).

Thus, for some p ∈ (0, 1), we have that z ∈ SLi (f (θ′′) , θ′′)
⋂
SL−i (f (θ′) , θ′), which

is a contradiction. Thus, SL−i (f (θ′) , θ′) = ∅. The definition of βP in (7) implies that

βP
−i(θ

′) = Θ. Thus, we have that (θ′, θ′′) ∈ βP
i (θ

′)× βP
−i(θ

′), which is a contradiction.

Therefore, it must be the case that P (θ′) ⊆ βP
i (θ′′), which is a contradiction. Thus,

SLi (f (θ′′) , θ′′)
⋂

SL−i (f (θ′) , θ′) ̸= ∅.

Let 0 < ϵ < 1. Let us define e(θ′, θ′′) as in (25). For ϵ small enough we have that

e(θ′, θ′′) ∈ SLi (f (θ′′) , θ′′)
⋂

SL−i (f (θ′) , θ′). ■

Lemma 9. For all θ ∈ Θ, m̄ = ((θ, 0), (θ, 0)) ∈ NE (M, θ)—that is, for all i ∈ I,

ui (g (m̄i, m̄−i) , θ) ≥ ui (g (mi, m̄−i) , θ) , (33)

for all mi ∈ Mi.

Proof. Suppose that θ ∈ Θ. By construction, m̄ falls into either Rule 0 or Rule 1.

In both cases, it holds that g (m̄) = f (θ). Fix any i ∈ I and any mi ∈ Mi. Note that

no unilateral deviation of i from m̄ can induce Rule 4. Thus, Rules 0-3 apply if i

changes m̄i into mi.

(A) Suppose that (mi, m̄−i) falls into Rule 0. Assume, to the contrary, that it holds

that ui(g((mi, m̄−i) , θ) > ui(g((m̄i, m̄−i) , θ). Then, g (mi, m̄−i) ̸= g (m̄i, m̄−i)

and i = 1, that is, mi = m1 and m2
1 = 0. Moreover, m1

1 ∈ ΘP and g (mi, m̄−i) =

f(m1
1). Thus, it holds that u1(f(θ), θ) < u1(f(m

1
1), θ). This implies that
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P (m1
1) ̸= P (θ). Since m1

1 ∈ ΘP , it follows that there exists θ̂ ∈ P (m1
1) such

that SL2(f(θ̂), θ̂) = ∅. By definition of βP
2 in (7), we have that βP

2 (m
1
1) =

β∗P
2 (m1

1) = Θ. Since 2P-GSMM∗∗ requires that
⋂
i∈I

β∗P = P , we have that

β∗P
1 (m1

1) = P (m1
1), and so θ̂ ∈ β∗P

1 (m1
1). Since f satisfies βP -GSMM∗∗ and

since P (m1
1) ̸= P (θ) and there exists θ̂ ∈ β∗P

1 (m1
1) such that SL2(f(θ̂), θ̂) ⊆

L2(f(m
1
1), θ), it must be the case that for θ ∈ β∗P

2 (m1
1) = Θ, it holds that

SL1(f(θ), θ)
⋂

SU1(f(m
1
1), θ) ̸= ∅. Thus, there is an allocation x such that

u1(f(θ), θ) ≥ u1(x, θ) > u1(f(m
1
1), θ). Therefore, we have that u1(f(θ), θ) >

u1(f(m
1
1), θ).

(B) Suppose that (mi, m̄−i) falls into Rule 1. Then, there exists θ̄′ ∈ Θ̄P such that

m̄1
−i ∈ β∗P

−i

(
θ̄′
)
, m1

i ∈ β∗P
i

(
θ̄′
)
, m2

i = m̄2
−i = 0 and g (mi, m̄−i) = f

(
θ̄′
)
. Since

θ ∈ β∗P
−i

(
θ̄′
)
, and so P (θ) ⊆ β∗P

−i

(
θ̄′
)
, and since f satisfies Measurability with

respect to β∗P , Lemma 4 implies that f(θ) = f(θ̄′).

(C) Suppose that (mi, m̄−i) falls into Rule 2. Then, g (m) = e
(
m1

i , m̄
1
−i

)
, and so

e (m1
i , θ) ∈ SLi (f (θ) , θ), by construction of g.

(D) Suppose that (mi, m̄−i) falls into Rule 3. Then, g (mi, m̄−i) =
(

m2
i

m2
i+1

)
x̄i

(
θ,m1

−i

)
+(

1
m2

i+1

)
xi (θ, θ). Since x̄i

(
θ,m1

−i

)
∈ Yi(θ,m

1
i ) ⊆ Li (f (θ) , θ) and xi (θ, θ) ∈

Li (f (θ) , θ), it follows that g (mi, m̄−i) ∈ Li (f (θ) , θ).

Since θ ∈ Θ, i ∈ I and mi ∈ Mi are arbitrary, we conclude that the inequality in

(33) is satisfied for all i ∈ I, for all θ ∈ Θ, and all mi ∈ Mi. Thus, m̄ ∈ NE (M, θ)

for all θ ∈ Θ. ■

Suppose that θ is true state. Lemma 9 implies that SM,θ is nonempty. According

to Definition 1, to complete the proof, we need to show that m ∈ SM,θ =⇒ g (m) =

f (θ). To this end, we need additional intermediate results. The following Lemmata

are immediate implications of Lemma 5, Lemma 6, and the definition of x̄i in Rule 3

of the mechanism.
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Lemma 10. For all i ∈ I and all θ, θ̄ ∈ Θ such that SLi(f(θ), θ) ̸= ∅ and SLi(f(θ̄), θ̄) ̸=

∅, ui(x̄i(θ̄, θ), θ) > ui(xi(θ̄, θ̄), θ).

Lemma 11. For all i ∈ I and all θ, θ̄, θ′ ∈ Θ such that SLi(f(θ), θ) ̸= ∅ and

(θ′, θ̄) /∈ β∗P (θ∗) for all θ∗ ∈ Θ, ui(x̄i(θ̄, θ), θ) > ui(e(θ
′, θ̄), θ).

For all i ∈ I and all θ ∈ Θ, let m̂i = (θ, m̂2
i ) ∈ Mi. The following lemmata will

help us to complete the proof.

Lemma 12. For all i ∈ I, all θ ∈ Θ, all mi ∈ Mi and all λθ
i ∈ ∆(M−i), if mi is

a best-response to λθ
i at θ, then m2

i = 0 if i = 1, otherwise, m2
i = 0, or for some

m−i ∈ supp(λθ
i ),m

1
−i ∈ ΘP , or θ ∈ ΘP .

Proof. Fix any i ∈ I, any θ ∈ Θ, any λθ
i ∈ ∆(M−i) and any mi ∈ Mi so that mi is a

best-response to λθ
i at θ. We proceed according to whether i = 1 or i = 2.

Case A: i = 1

Assume, to the contrary, m2
1 > 0. Since i = 1 and since m2

1 > 0 , it follows that

for all m2 ∈supp
(
λθ
1

)
, (m1,m2) falls either into Rule 3 or into Rule 4. Let M3

2 be

defined by

M3
2 =

{
m2 ∈ supp

(
λθ
1

)
|m2

2 = 0
}

.

Similarly, let M4
2 be defined by

M4
2 =

{
m2 ∈ supp

(
λθ
1

)
|m2

2 > 0
}

.

Clearly, supp
(
λθ
1

)
= M3

2 ∪M4
2. Fix any m2 ∈ M3

2. Then, (m1,m2) falls into Rule 3

and

g (m1,m2) =

(
m2

1

m2
1 + 1

)
x̄1

(
m1

2,m
1
1

)
+

(
1

m2
1 + 1

)
x1

(
m1

2,m
1
2

)
.

By definition of x̄1 (m
1
2, ·) provided in the definition of Rule 3, we have that

u1

(
x̄1

(
m1

2, θ
)
, θ
)
≥ u1

(
x̄1

(
m1

2,m
1
1

)
, θ
)
.
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Moreover, Lemma 10 implies that

u1

(
x̄1

(
m1

2, θ
)
, θ
)
> u1

(
x1

(
m1

2,m
1
2

)
, θ
)
. (34)

Thus, player 1 by changing m1 into m̂1, with m̂2
1 = m2

1 + k for any positive integer k,

he induces Rule 3 and he obtains

g (m̂1,m2) =

(
m2

1 + k

m2
1 + k + 1

)
x̄1

(
m1

2, θ
)
+

(
1

m2
1 + k + 1

)
x1

(
m1

2,m
1
2

)
.

Since u1

(
x̄1

(
θ̄, θ

)
, θ
)
≥ u1

(
x̄1

(
θ̄, m1

1

)
, θ
)
, since (34) holds, and since m̂2

1 = m2
1 +

k > m2
1, it follows that

u1 (g (m̂1,m2) , θ) > u1 (g (m1,m2) , θ) . (35)

Since the choice of m2 ∈ M3
2 was arbitrary, it follows that (35) holds for all m2 ∈ M3

2,

and so

∑
m2∈M3

2

λθ
1

(
m1

2

)
u1 (g (m̂1,m2) , θ) >

∑
m2∈M3

2

λθ
1

(
m1

2

)
u1 (g (m1,m2) , θ) . (36)

Let us partition M4
2 by defining M4

2 (1) by

M4
2 (1) =

{
m2 ∈ M4

2|m2
1 ≥ m2

2

}
.

Let M4
2 (2) be defined by

M4
2 (2) =

{
m2 ∈ M4

2|m2
2 > m2

1

}
.

Fix any m2 ∈ M4
2. Then, (m1,m2) falls into Rule 4 and

g (m1,m2) =

(
m2

j

m2
j + 1

)
y∗j

(
m1

j

)
+

(
1

m2
j + 1

)
y (37)
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for some j ∈ I. Fix any m2 ∈ M4
2 (1) and any m̄2 ∈ M4

2 (2). Let a∗ = max {m2
1, m̄

2
2}.

Player 1 by changing m1 into m̂1, with m̂2
1 = a∗ + k′ for any positive integer k′, he

induces Rule 4 and he obtains

g (m̂1,m2) =

(
a∗ + k′

a∗ + k′ + 1

)
y∗1 (θ) +

(
1

a∗ + k′ + 1

)
y.

By definition of y∗1 (·) provided in the definition of Rule 4, we have that

u1 (y
∗
1 (θ) , θ) ≥ u1

(
y∗1

(
m1

1

)
, θ
)

(38)

and

u1 (y
∗
1 (θ) , θ) ≥ u1

(
y∗2

(
m1

2

)
, θ
)
. (39)

Moreover, by construction, it holds that19

u1 (y
∗
1 (θ) , θ) > u1

(
y, θ

)
. (40)

Since m̂2
1 = a∗ + k′ > a∗ = max {m2

1, m̄
2
2} and since (38)-(40) hold, it follows that

u1 (g (m̂1,m2) , θ) > u1 (g (m1,m2) , θ) (41)

and

u1 (g (m̂1, m̄2) , θ) > u1 (g (m1, m̄2) , θ) . (42)

Given that (39) and (42) hold, it follows that

∑
m̃2∈M4

2

λθ
1

(
m̃1

2

)
u1 (g (m̂1, m̃2) , θ) >

∑
m̃2∈M4

2

λθ
1

(
m̃1

2

)
u1 (g (m1, m̃2) , θ) . (43)

Let b∗ = max{a∗ + k′,m2
1 + k} and let m̂∗

1 = (θ, b). It follows from (36) and (43)

19To see this, note that u1 (y
∗
1 (θ) , θ) ≥ u1

(
y
1
(θ), θ

)
, where y

1
(θ) is defined in (27). Since

SL1(f(θ), θ) ̸= ∅, it holds that u1

(
y
1
(θ), θ

)
> u1

(
y, θ

)
.
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that

∑
m2∈M3

2

λθ
1

(
m1

2

)
u1 (g (m̂

∗
1,m2) , θ) +

∑
m̃2∈M4

2

λθ
1

(
m̃1

2

)
u1 (g (m̂

∗
1, m̃2) , θ)

>
∑

m2∈M3
2

λθ
1

(
m1

2

)
u1 (g (m1,m2) , θ) +

∑
m̃2∈M4

2

λθ
1

(
m̃1

2

)
u1 (g (m1, m̃2) , θ) .

which contradicts our initial supposition that m1 is a best-response to λθ
1 at θ.

Case B : i = 2

Assume, to the contrary, that m2
2 > 0, that m1

1 /∈ ΘP for all m1 ∈ supp(λθ
2) and

that θ /∈ ΘP . It follows that for all m1 ∈supp
(
λθ
2

)
, (m1,m2) falls either into Rule

3 or into Rule 4. By using a reasoning similar to that used in the proof of Case A

above, we see that m2 is not a best-response to λθ
2 at θ, which is a contradiction.

■

In what follows, we partition M2 into M2(0) and M2(1), where M2(0) is defined by

M2(0) = {m2 ∈ M2|m2 = 0} (44)

and M2(1) = M2 \M2(0).

Lemma 13. For all θ ∈ Θ and all m1 ∈ M1, if m1 is a best-response to λθ
1 ∈ ∆(M2)

at θ, then supp
(
λθ
1

)
⊆ M2(0).

Proof. Fix any θ ∈ Θ and any m1 ∈ M1 such that m1 is a best-response to λθ
1 ∈ ∆(M2)

at θ. Let us denote the utility of m1 under λθ
1 by

U1(m1, λ
θ
1, θ) =

∑
m2∈M2

λθ
1(m2)u1(g(m1,m2), θ). (45)

Assume. to the contrary, that there exists m̄2 ∈ supp
(
λθ
1

)
such that m̄2

2 > 0. Using
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this assumption, we will show that there exists an integer m̂2
1 < ∞ such that

U1(m̂1, λ
θ
1, θ) > U1(m1, λ

θ
1, θ). (46)

where m̂1 = (θ, m̂2
1) and m̂2

1 > 0.

Fix any m2 ∈ M2. Let us proceed according to whether m2 ∈ M2(0) or not.

Case 1 : m2 ∈ M2(0).

Then, g (m1,m2) falls into Rules 0-1. By construction of g, we have that u1(x̄1(m
1
2, θ), θ) ≥

u1(g(m1,m2), θ). And so,

lim
m̂2

1→∞
u1(g(m̂1,m2), θ) = u1(x̄1(m

1
2, θ), θ) ≥ u1(g(m1,m2), θ). (47)

Case 2 : m2 ∈ M2(1).

By definition of y∗1(θ) and the fact that y ∈ supp(g(m1,m2)), it holds that

lim
m̂2

1→∞
u1(g(m̂1,m2), θ) = u1(y

∗
1(θ), θ) > u1(g(m1,m2), θ). (48)

Since

lim
m̂2

1→∞
u1(g(m̂1,m2), θ) = u1(x̄1(m

1
2, θ), θ) ≥ u1(g(m1,m2), θ). (49)

for all m2 ∈ supp(λ1), and

lim
m̂2

1→∞
u1(g(m̂1,m2), θ) = u1(y

∗(θ), θ) > u1(g(m1,m2), θ) (50)

for some m2 ∈ supp(λ1), and since M2(1) ̸= ∅, we have that

lim
m̂2

1→∞
U1(m̂1, λ

θ
1, θ) > U1(m1, λ

θ
1). (51)

Since the utility of m̂1 under λθ
1 is strictly increasing in m̂2

1, player 1 can change m1

into m̂1 and induce Rule 3. By appropriately choosing 0 < m̂2
1 < ∞, he obtains that
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U1(m̂
θ
1, λ

θ
1, θ) > U1(m1, λ

θ
1, θ), which contradicts our initial supposition that m1 is a

best-response to λθ
1 at θ.

■

Lemma 14. For all θ ∈ Θ̄P , all i ∈ I, and all mi ∈ SM,θ
i , m1

i /∈ ΘP and m2
i = 0.

Proof. Fix any θ ∈ Θ̄P . We proceed according to whether i = 1 or i = 2.

Case 1 : i = 1

Suppose that m1 ∈ SM,θ
1 . Then, m1 is a best-response to λθ

1 ∈ ∆(SM,θ
2 ) at θ.

Lemma 12 implies that m2
1 = 0. Lemma 13 implies that m2 ∈ supp

(
λθ
1

)
is such that

m2
2 = 0. Assume, to the contrary, that m1

1 ∈ ΘP . Since m1
1 ∈ ΘP and θ ∈ Θ̄P ,

P (θ) ̸= P (m1
1). Since m1

1 ∈ ΘP , it follows that IP (m1
1) = {1}, and so β∗P -GSMM∗∗

implies that for all θ̂ ∈ β∗P
2 (m1

1) = Θ,

L1(f(θ̂), θ̂)
⋂

SU1(f(m
1
1), θ) ̸= ∅. (52)

Fix any m̂1 = (θ, m̂2
1), where m̂2

1 > 0. For all m2 ∈supp
(
λθ
1

)
, (m̂1,m2) falls into Rule

3 and

g (m̂1,m2) =

(
m̂2

1

m̂2
1 + 1

)
x̄1

(
m1

2, θ
)
+

(
1

m̂2
1 + 1

)
x1

(
m1

2,m
1
2

)
.

Since u1 (x̄1 (m
1
2, ·) , θ) > u1 (f (m1

1) , θ) for all m2 ∈supp
(
λθ
1

)
, by choosing a suffi-

ciently high integer m̂2
1 > 0, player 1 obtains that

U1

(
m̂1, λ

θ
1, θ

)
>

∑
m2∈supp(λθ

1)

λθ
1

(
m1

2

)
u1 (g (m1,m2) , θ) = u1

(
f
(
m1

1

)
, θ
)
. (53)

Therefore, by changing m1 into m̂1 and by choosing an appropriate integer m̂2
1 > 0,

player 1 can obtain

U1

(
m̂1, λ

θ
1, θ

)
> u1

(
f
(
m1

1

)
, θ
)
,

which contradicts our initial supposition that m1 is a best-response to λθ
1 at θ.
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Case 2 : i = 2.

Suppose that m2 ∈ SM,θ
2 . Then, m2 is a best-response to λθ

2 ∈ ∆(SM,θ
1 ) at θ.

Lemma 12 implies that or m2
2 = 0, or for some m1 ∈ supp(λθ

2),m
1
1 ∈ ΘP , or θ ∈ ΘP .

Since θ ∈ Θ̄P , it follows that m2
2 = 0 or for some m1 ∈ supp(λθ

2),m
1
1 ∈ ΘP . Suppose

that for some m1 ∈ supp(λθ
2),m

1
1 ∈ ΘP . Since m1 ∈ SM,θ

1 , Case 1 above implies that

m1
1 /∈ ΘP , which is a contradiction. Thus, it must be the case that m2

2 = 0.

Let us show that m1
2 /∈ ΘP . Assume, to the contrary, that m1

2 ∈ ΘP . Fix any

m1 ∈ supp(λθ
2). Since m1

2 ∈ ΘP , we have that β∗P
1 (m1

1) = P (m1
1) ⊆ Θ̄P and that

β∗P
2 (m1

2) = Θ. Since m1
2 ∈ ΘP and since m1

1 ∈ Θ̄P , and since m2
1 = m2

2 = 0, it

follows that (m1,m2) falls into Rule 2. Therefore, g(m1,m2) = e (m1
2,m

1
2). Since

θ /∈ ΘP , Lemma 11 implies that u2 (x̄2 (m
1
2, θ) , θ) > u2 (e (m

1
2,m

1
2) , θ). By choosing

an appropriate integer m̂2
2 > 0, player 2 can induce Rule 3, obtain g (m1, m̂2) and

be strictly better off at θ since u2 (x̄2 (m
1
1, θ) , θ) > u2 (g (m1,m2) , θ), a contradiction

to our initial assumption that m2 is a best-response to λθ
2 at θ.

■

Lemma 15. For all i ∈ I, all θ ∈ Θ̄P and all mi ∈ Mi, if mi is a best-response to

λθ
i ∈ ∆(SM,θ

−i ) at θ, then there exists m−i ∈ supp
(
λθ
i

)
such that mi is a best-response

to m−i at θ.

Proof. Fix any i ∈ I, any θ ∈ Θ̄P anf any λθ
i ∈ ∆

(
SM,θ
−i

)
and any mi ∈ Mi such

that mi is a best-response to λθ
i at θ. Assume, to the contrary, that mi is not a

best-response to any m−i ∈supp
(
λθ
i

)
at θ. Fix any m−i ∈supp

(
λθ
i

)
. Since m ∈ SM,θ,

for each i ∈ I, there exists λθ
i ∈ ∆(SM,θ

−i ) such that mi is a best-response to λθ
i at

θ. Lemma 14 implies that (m2
i ,m

2
−i) = (0, 0) and that m1

1 /∈ ΘP . Then, (mi,m−i)

cannot fall into Rule 0. It follows that (mi,m−i) falls either into Rule 1 or Rule 2.

Case 1 : (mi,m−i) falls into Rule 1.

Then, there exists θ̄ ∈ Θ̄P such that (m1
i )i∈I ∈ β∗P (

θ̄
)

and m2
i = 0 for all i ∈ I

and g(mi,m−i) = f(θ̄). It follows that g(mi,m−i) = f(m1
−i). To see this, since
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there exists θ̄ such that (m1
i ,m

1
−i) ∈ β∗P (θ̄), it follows from definition of β∗P that

(m1
i ,m

1
−i) ∈ β∗P (m1

−i). Measurability implies that f(θ̄) = f(m1
−i).20

Clearly, mi is a best-response to m−i when the true state is m1
−i. Since m−i ∈supp

(
λθ
i

)
,

it is the case that m1
−i ̸= θ. Since mi is not a best-response to m−i at θ, by construc-

tion of g, it holds that

Li(f(m
1
−i),m

1
−i)

⋂
SUi(f(m

1
−i), θ) ̸= ∅.

By definition of x̄i

(
m1

−i, ·
)

provided in Rule 3, it follows that ui

(
x̄i

(
m1

−i, θ
)
, θ
)
>

ui

(
f
(
m1

−i

)
, θ
)
= ui (g (mi,m−i) , θ).

Case 2 : (mi,m−i) falls into Rule 2.

Then, g (m) = e
(
m1

i ,m
1
−i

)
. Since θ /∈ ΘP , Lemma 11 implies that ui

(
x̄i

(
m1

−i, θ
)
, θ
)
>

ui

(
e
(
m1

i ,m
1
−i

)
, θ
)
= ui (g (mi,m−i) , θ).

For all m−i ∈ supp(λθ
i ), we have

lim
m̂2

i→∞
ui(g(m̂i,m−i), θ) = ui(x̄i(m

1
−i, θ), θ) > u1(g(mi,m−i), θ), (54)

and so

lim
m̂2

i→∞
Ui(m̂i, λ

θ
i , θ) > Ui(mi, λ

θ
i , θ). (55)

Since the utility of m̂i under λθ
i is strictly increasing in m̂2

i , player i can change mi

into m̂i and induce Rule 3. By appropriately choosing 0 < m̂2
i < ∞, he obtains

that Ui(m̂i, λ
θ
i , θ) > Ui(mi, λ

θ
i , θ), which contradicts our initial supposition that mi is

a best-response to λθ
i at θ.

■
20Since

(
m1

i ,m
1
−i

)
∈ β∗P (

θ̄
)

for some θ̄ ∈ Θ̄P , it holds that P
(
m1

i

)
⊆ β∗P

i

(
θ̄
)

and P
(
m1

−i

)
⊆

β∗P
−i

(
θ̄
)
. Again, since β∗P is the limit point of the sequence

{
βP
k

}
k≥0

, it follows from the definition
of β∗P that P

(
m1

i

)
⊆ β∗P

i

(
m1

−i

)
, and so m1

i ∈ β∗P
i

(
m1

−i

)
.
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Lemma 16. For all θ ∈ ΘP and all m1 ∈ M1, if m1 is a best-response to λθ
1 ∈ ∆(SM,θ

2 )

at θ, then there exists m2 ∈ supp
(
λθ
1

)
such that m1 is a best-response to m2 at θ.

Proof. Fix any θ ∈ ΘP and any m1 ∈ M1 such that m1 is a best-response to λθ
1 ∈

∆(SM,θ
2 ) at θ. We show that there exists m2 ∈ supp

(
λθ
1

)
such that m1 is a best-

response to m2 at θ. Let us denote the utility of m1 under λθ
1 by

U1(m1, λ
θ
1, θ) =

∑
m2∈M2

λθ
1(m2)u1(g(m1,m2), θ). (56)

Assume, to the contrary, that for each m2 ∈ supp
(
λθ
1

)
, m1 is not a best-response to

m2 at θ. Thus, for each m2 ∈ supp
(
λθ
1

)
, there exists m̄1 such that u1(g(m̄1,m2), θ) >

u1(g(m1,m2), θ). Using this assumption, we will show that there exists m̂2
1 < ∞ such

that

U1(m̂1, λ
θ
1, θ) > U1(m1, λ

θ
1, θ) (57)

where m̂1 = (θ, m̂2
1) and m̂2

1 > 0.

Fix any m2 ∈ supp(λθ
1). Lemma 13 implies that m2

2 = 0. We proceed by cases.

Case 1 : (m1,m2) falls into Rule 0.

Then, g(m1,m2) = f(m1
1). Since there exists m̄1 such that u1(g(m̄1,m2), θ) >

u1(g(m1,m2), θ), it must be the case that u1(x̄1(m
1
2, θ), θ) > u1(f(m

1
1), θ).21 Thus,

lim
m̂2

1→∞
u1(g(m̂1,m2), θ) = u1(x̄1(m

1
2, θ), θ) > u1(g(m1,m2), θ). (58)

Case 2 : (m1,m2) falls into Rule 1.

Then, g(m1,m2) = f(θ̄) for some θ̄ ∈ Θ̄P . By definition of β∗P and since f

satisfies Measurability, it follows that g(m1,m2) = f(m1
2). Since there exists m̄1 such

that u1(g(m̄1,m2), θ) > u1(g(m1,m2), θ), it must be the case that u1(x̄1(m
1
2, θ), θ) >

21Player 1 can only have a profitable deviation by inducing Rule 3.
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u1(f(m
1
2), θ).22 Therefore,

lim
m̂2

1→∞
u1(g(m̂1,m2), θ) = u1(x̄1(m

1
2, θ), θ) > u1(g(m1,m2), θ). (59)

Case 3 : (m1,m2) falls into Rule 2.

Then, g (m) = e
(
m1

i ,m
1
−i

)
. Since there exists m̄1 such that u1(g(m̄1,m2), θ) >

u1(g(m1,m2), θ), it must be the case that u1(x̄1(m
1
2, θ), θ) > u1(e(m

1
1,m

1
2), θ). There-

fore,

lim
m̂2

1→∞
u1(g(m̂1,m2), θ) = u1(x̄1(m

1
2, θ), θ) > u1(g(m1,m2), θ). (60)

Since the choice of m2 ∈ supp(λθ
1) was arbitrary, we have that for all m2 ∈ supp(λθ

1),

lim
m̂2

1→∞
u1(g(m̂1,m2), θ) > u1(g(m1,m2), θ). It follows that

lim
m̂2

1→∞
U1(m̂1, λ

θ
1) > U1(m1, λ

θ
1). (61)

Since the utility of m̂1 under λθ
1 is strictly increasing in m̂2

1, player 1 can change m1

into m̂1 and induce Rule 3. By appropriately choosing 0 < m̂2
1 < ∞, he obtains that

U1(m̂1, λ
θ
1, θ) > U1(m1, λ

θ
1, θ), which contradicts our initial supposition that m1 is a

best-response to λθ
1 at θ. ■

Lemma 17. For all i ∈ I, all θ ∈ Θ̄P , all mi ∈ SM,θ
i and all m−i ∈ SM,θ

−i , if mi is a

best-response to m−i at θ, then (mi,m−i) falls into Rule 1.

Proof. Fix any i ∈ I, any θ ∈ Θ̄P , any mi ∈ SM,θ
i and all m−i ∈ SM,θ

−i such that mi

is a best-response to m−i at θ. Lemma 14 implies that m2
i = 0 and m2

i ∈ Θ̄P , for all

i ∈ I. Thus, (mi,m−i) falls either into Rule 1 or Rule 2. To complete the proof it

suffices to show that (mi,m−i) does not fall into Rule 2.

Assume, to the contrary, that (mi,m−i) falls into Rule 2. Then, g(mi,m−i) =

e
(
m1

i ,m
1
−i

)
. Since θ ∈ Θ̄P , Lemma 11 implies that ui

(
x̄i

(
m1

−i, θ
)
, θ
)
> ui

(
e
(
m1

i ,m
1
−i

)
, θ
)
.

22Again, player 1 can only have a profitable deviation by inducing Rule 3.
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Player i can change mi into m̂i and induce Rule 3. By appropriately choosing

0 < m̂2
i < ∞, he obtains that u1(g(m̂1,m2), θ) > ui

(
e
(
m1

i ,m
1
−i

)
, θ
)
, which contra-

dicts our initial supposition that m1 is a best-response to m−i at θ. ■

Lemma 18. For all θ ∈ ΘP and all m1 ∈ SM,θ
1 , if m1 is a best response to some

m2 ∈ M2 at θ, then (m1,m2) falls into Rule 0.

Proof. Fix any θ ∈ ΘP and any m1 ∈ SM,θ
1 such that m1 is a best response to some

m2 ∈ M2 at θ. Lemma 12 implies that m2
1 = 0. Lemma 13 implies that m2

2 = 0.

Therefore, (m1,m2) does not fall into either Rule 3 or Rule 4. To complete the proof,

it suffices to show that (m1,m2) does not fall into Rule 1 and Rule 2 either. Assume,

to the contrary, that (m1,m2) falls into Rule 2. Then, g(m1,m2) = e(m1
1,m

1
2) and

e(m1
1,m

1
2) ∈ SL1(f(m

1
2),m

1
2). Since SL1(f(m

1
2),m

1
2) ̸= ∅, Rule 3 is well-defined for

(m̂1,m2) where m̂2
1 > 0. Since SL1(f(θ), θ) ̸= ∅ and SL1(f(m

1
2),m

1
2) ̸= ∅, Lemma

11 implies that u2 (x̄2 (m
1
2, θ) , θ) > u2 (e (m

1
1,m

1
2) , θ). Player 1 can change m1 into

m̂1 = (θ, m̂2
1) with m̂2

1 > 0 and induce Rule 3. By appropriately choosing 0 < m̂2
1 <

∞, he obtains that u1(g(m̂1,m2), θ) > ui (e (m
1
1,m

1
2) , θ), which contradicts our initial

supposition that m1 is a best-response to m2 at θ.

Assume, to the contrary, that (m1,m2) falls into Rule 1. Thus, m2
i = 0 for all

i ∈ I and (m1
1,m

1
2) ∈ β∗P (

θ̄
)

for some θ̄ ∈ Θ̄P , and g(m1,m2) = f(θ̄). By definition

of β∗P and since f satisfies Measurability, it follows that g(m1,m2) = f(m1
2). Since

m1 is a best-response to m2 at θ, it follows that

L1

(
f
(
m1

2

)
,m1

2

)
⊆ L1

(
f
(
m1

2

)
, θ
)
. (62)

Since θ ∈ ΘP , it follows that IP (θ) = {1}. Since m1
2 ∈ β∗P

2 (m1
2), β∗P–GSMM∗∗ implies

that P (m1
2) = P (θ). Thus, m1

2 ∈ ΘP , which yields a contradiction.

■

To complete the proof, we show the following result.

Lemma 19. For all i ∈ I, all θ ∈ Θ and all mi ∈ Mi, mi ∈ SM,θ
i =⇒ m1

i ∈ β∗P
i (θ).
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Proof. We proceed according to whether θ ∈ Θ̄P or θ ∈ ΘP

Case 1: θ ∈ Θ̄P .

Fix any i ∈ I, any θ ∈ Θ̄P and any mi ∈ SM,θ
i . Let us show that m1

i ∈ β∗P
i (θ).

Since mi ∈ SM,θ
i , there exists λi ∈ ∆

(
SM,θ
−i

)
such that mi is a best-response to λi

at θ. Lemma 15 implies that mi is a best-response to some m−i ∈supp(λi) at θ.

Lemma 17 implies that (mi,m−i) falls into Rule 1. Thus, m2
i = 0 for all i ∈ I and(

m1
i ,m

1
−i

)
∈ β∗P (

θ̄
)

for some θ̄ ∈ Θ̄P , and g(mi,m−i) = f(θ̄). By definition of β∗P

and since f satisfies Measurability, it follows that g(mi,m−i) = f(m1
−i). Since mi is

a best-response to m−i ∈supp(λi) at θ and m2
i = 0 for all i ∈ I, it follows that

Li

(
f
(
m1

−i

)
,m1

−i

)
⊆ Li

(
f
(
m1

−i

)
, θ
)
. (63)

Since m−i ∈ SM,θ
−i , there exists λ−i ∈ ∆

(
SM,θ
i

)
such that m−i is a best-response

to λ−i at θ. Lemma 15 implies that m−i is a best-response to some m̂i ∈supp(λ−i)

at θ. Lemma 17 implies that (m̂i,m−i) falls into Rule 1. Thus, m̂2
i = m2

−i = 0 and(
m̂1

i ,m
1
−i

)
∈ β∗P

(
θ̂
)

for some θ̂ ∈ Θ̄P . Since mi is a best-response to m−i ∈supp(λi)

at θ and m̂2
i = m2

−i = 0, it follows that

L−i

(
f
(
m̂1

i

)
, m̂1

i

)
⊆ L−i

(
f
(
θ̂
)
, θ
)

.

Since m̂1
i ∈ β∗P

i

(
θ̂
)

and so P (m̂1
i ) ⊆ β∗P

i

(
θ̂
)
, Lemma 1 implies that f (m̂1

i ) = f
(
θ̂
)
,

and so

L−i

(
f
(
m̂1

i

)
, m̂1

i

)
⊆ L−i

(
f
(
m̂1

i

)
, θ
)
. (64)

Since
(
m̂1

i ,m
1
−i

)
∈ β∗P

(
θ̂
)
, it follows that P (m̂1

i ) ⊆ β∗P
i

(
θ̂
)

and P
(
m1

−i

)
⊆ β∗P

−i

(
θ̂
)
.

Since β∗P is the limit point of the sequence
{
βP
k

}
k≥0

, it follows from the definition

of β∗P that P (m̂1
i ) ⊆ β∗P

i

(
m1

−i

)
, and so

(
m̂1

i ,m
1
−i

)
∈ β∗P (

m1
−i

)
. Since

(
m̂1

i ,m
1
−i

)
∈

β∗P (
m1

−i

)
and since (63) and (64) holds, β∗P -GSMM∗∗ implies that P (θ) = P

(
m1

−i

)
.

Since
(
m1

i ,m
1
−i

)
∈ β∗P (

θ̄
)

for some θ̄ ∈ Θ̄P , it holds that P (m1
i ) ⊆ β∗P

i

(
θ̄
)

and
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P
(
m1

−i

)
⊆ β∗P

−i

(
θ̄
)
. Again, since β∗P is the limit point of the sequence

{
βP
k

}
k≥0

, it

follows from the definition of β∗P that P (m1
i ) ⊆ β∗P

i

(
m1

−i

)
, and so m1

i ∈ β∗P
i

(
m1

−i

)
.

If β∗P
i

(
m1

−i

)
⊆ β∗P

i (θ), then m1
i ∈ β∗P

i (θ). Thus, the complete the proof we are left

to show that β∗P
i

(
m1

−i

)
⊆ β∗P

i (θ). We proceed according to whether k ̸= 0 or not.

Let k = 0. Let us show that βP
i

(
m1

−i

)
⊆ βP

i (θ). Take any θ′ ∈ Θ such that

P (θ′) ⊆ βP
i

(
m1

−i

)
. To avoid trivialities, let us suppose that θ′ /∈

{
θ,m1

−i

}
.23 Then,

there exists
(
θ̄, θ̂

)
∈ P

(
m1

−i

)
×P (θ′) such that SLi

(
f
(
θ̄
)
, θ̄
)
∩L−i

(
f
(
θ̂
)
, θ̂
)
= ∅.

Since P (θ) = P
(
m1

−i

)
, it follows from definition of βP in (7) that P (θ′) ⊆ βP

i (θ).

Since the choice of θ′ was arbitrary, it follows that βP
i

(
m1

−i

)
⊆ βP

i (θ).

Assume that k ̸= 0. Let us show that βP
i,k

(
m1

−i

)
⊆ βP

i,k (θ). Take any θ′ ∈ Θ such

that P (θ′) ⊆ βP
i,k

(
m1

−i

)
. To avoid trivialities, let us suppose that θ′ /∈

{
θ,m1

−i

}
.

Since P (θ′) ⊆ βP
i,k

(
m1

−i

)
, then there exists θ̄ ∈ Θ such that P (θ′) ⊆ βP

i,k−1

(
θ̄
)

and

P
(
m1

−i

)
⊆ βP

−i,k−1

(
θ̄
)
. Since P (θ) = P

(
m1

−i

)
, it follows that there exists θ̄ ∈ Θ such

that P (θ′) ⊆ βP
i,k−1

(
θ̄
)

and P (θ) ⊆ βP
−i,k−1

(
θ̄
)
. It follows from definition of βP

i,k that

P (θ′) ⊆ βP
i,k (θ).

Since βP
i,k

(
m1

−i

)
⊆ βP

i,k (θ) for all k ≥ 0, it follows that β∗P
i

(
m1

−i

)
⊆ β∗P

i (θ).

Case 2: θ ∈ ΘP .

Suppose that θ ∈ ΘP . It is trivial to show that SM,θ
2 = M2. Since θ ∈ ΘP , it

follows that βP
2 (θ) = Θ, and so M1

2 = β∗P
2 (θ). In what follows, we focus on player 1.

Suppose that m1 ∈ SM,θ
1 . Let us show that m1

1 ∈ β∗P
1 (θ). 2P-GSSM∗∗ implies

that β∗P
1 (θ) = P (θ). Since m1 ∈ SM,θ

1 , m1 is a best-response to λθ
1 ∈ ∆(SM,θ

2 ) at θ.

Lemma 16 implies that there exists m2 ∈ supp
(
λθ
1

)
such that m1 is a best-response to

m2 at θ. Lemma 18 implies that (m1,m2) falls into Rule 0. Then, m1
1 ∈ ΘP . Since

m1 is a best response to m2 at θ, it holds that

L1(f(m
1
2),m

1
2) ⊆ L1(f(m

1
1), θ). (65)

23Recall that P (θ) = P
(
m1

−i

)
.
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Since m1
2 ∈ β∗P

2 (m1
1) and IP (θ) = {1}, β∗P–GSMM∗∗ implies that P (m1

1) = P (θ).

Thus, m1
1 ∈ β∗P

1 (θ) = P (θ). ■

References

Abreu, D. and Matsushima, H. (1992). Virtual implementation in iteratively undom-

inated strategies II: Incomplete information. Princeton University working paper.

Benoît, J.-P. and Ok, E. A. (2008). Nash implementation without no-veto power.

Games and Economic Behavior, 64(1):51–67.

Bergemann, D., Morris, S., and Tercieux, O. (2011). Rationalizable implementation.

Journal of Economic Theory, 146(3):1253–1274.

Bernheim, B. D. (1984). Rationalizable strategic behavior. Econometrica: Journal of

the Econometric Society, pages 1007–1028.

Bochet, O. (2007). Nash implementation with lottery mechanisms. Social Choice and

Welfare, 28(1):111–125.

Brandenburger, A. and Dekel, E. (1987). Rationalizability and correlated equilibria.

Econometrica: Journal of the Econometric Society, pages 1391–1402.

Cabrales, A. and Serrano, R. (2011). Implementation in adaptive better-response

dynamics: Towards a general theory of bounded rationality in mechanisms. Games

and Economic Behavior, 73(2):360–374.

Chen, Y.-C., Kunimoto, T., Sun, Y., and Xiong, S. (2021). Rationalizable implemen-

tation in finite mechanisms. Games and Economic Behavior, 129:181–197.

Danilov, V. (1992). Implementation via nash equilibria. Econometrica: Journal of

the Econometric Society, pages 43–56.

De Clippel, G., Eliaz, K., and Knight, B. (2014). On the selection of arbitrators.

American Economic Review, 104(11):3434–58.

58



Dutta, B. and Sen, A. (1991). A necessary and sufficient condition for two-person

nash implementation. The Review of Economic Studies, 58(1):121–128.

Hurwicz, L. and Schmeidler, D. (1978). Construction of outcome functions guaran-

teeing existence and pareto optimality of nash equilibria. Econometrica: Journal

of the Econometric Society, pages 1447–1474.

Jackson, M. O. (1991). Bayesian implementation. Econometrica: Journal of the

Econometric Society, pages 461–477.

Jackson, M. O. (2001). A crash course in implementation theory. Social choice and

welfare, 18(4):655–708.

Jain, R. (2021). Rationalizable implementation of social choice correspondences.

Games and Economic Behavior, 127:47–66.

Jain, R., Korpella, V., and Lombardi, M. (2021). An iterative approach to ratio-

nalizable implementation. Technical report, IEAS Working Paper No. 21-A001,

Institute of Economics, Academia Sinica, Taipei, Taiwan.

Jain, R. and Lombardi, M. (2022). On interim rationalizable monotonicity. Available

at SSRN 4106795.

Kunimoto, T. and Serrano, R. (2019). Rationalizable implementation of correspon-

dences. Mathematics of Operations Research, 44(4):1326–1344.

Laslier, J.-F., Nunez, M., and Sanver, M. R. (2021). A solution to the two-person

implementation problem. Journal of Economic Theory, 194:105261.

Lipman, B. L. (1994). A note on the implications of common knowledge of rationality.

Games and Economic Behavior, 6(1):114–129.

Lombardi, M. and Yoshihara, N. (2013). A full characterization of nash implementa-

tion with strategy space reduction. Economic Theory, pages 131–151.

59



Maskin, E. (1999). Nash equilibrium and welfare optimality. The Review of Economic

Studies, 66(1):23–38.

Mezzetti, C. and Renou, L. (2017). Repeated nash implementation. Theoretical

Economics, 12(1):249–285.

Moore, J. and Repullo, R. (1988). Subgame perfect implementation. Econometrica:

Journal of the Econometric Society, pages 1191–1220.

Moore, J. and Repullo, R. (1990). Nash implementation: a full characterization.

Econometrica: Journal of the Econometric Society, pages 1083–1099.

Osborne, M. J. and Rubinstein, A. (1994). A course in game theory. MIT press.

Oury, M. and Tercieux, O. (2012). Continuous implementation. Econometrica,

80(4):1605–1637.

Palfrey, T. (2002). Impleemntation theory. in Handbook of Game Theory, Vol. III

(R. Aumann and S. Hart eds.), pages 2272–2326.

Pearce, D. G. (1984). Rationalizable strategic behavior and the problem of perfection.

Econometrica: Journal of the Econometric Society, pages 1029–1050.

Saijo, T., Sjostrom, T., and Yamato, T. (2007). Secure implentation. Theoretical

Economics, pages 203–229.

Saijo, T., Tatamitani, Y., and Yamato, T. (1996). Toward natural implementation.

International Economic Review, pages 949–980.

Sjostrom, T. (1991). On the necessary and sufficient conditions for nash implemen-

tation. Social Choice and Welfare, pages 333–340.

Xiong, S. (2022). Rationalizable implementation: Social choice function. Theoretical

Economics, Forthcoming.

60



Yamato, T. (1992). On nash implementation of social choice correspondences. Games

and Economic behavior, 4(3):484–492.

61


	Introduction
	Setup
	Contextualizing Example
	Two-Player Generalized Maskin Monotonicity (2P-GSMM)
	A Full Characterization
	Connecting 2P-GSMM with xiong2020SCF's implementing condition

	Endogenizing Partitions For Two-Player Problems
	Concluding Remarks: Social Choice Correspondences
	Proof of "Only If" part of Theorem 1
	Proof of "If" part of Theorem 1

