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Abstract

We introduce bankruptcy choice to the heterogeneous agent in continuous time (HACT)
framework developed in Achdou et al. (2022). We demonstrate that real-options-like prob-
lems such as the decision to declare bankruptcy can be efficiently solved using the “value-
matching” condition only (unlike alternative methods that require both value matching and
“smooth pasting”). Moreover, we show that under certain conditions, smooth-pasting may
not hold. Given this, we recommend (and demonstrate the use of) linear complementarity
problem (LCP) solvers for real-option like problems, especially in settings where control
variables depend on the slope of the value function. We show that this approach is more
flexible and computationally efficient than other popular solution methods. In particular,
it is less prone to errors in settings that have corner solutions.
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1 Introduction

Continuous-time methods for efficiently solving heterogeneous agent models have transformed
the macroeconomic research agenda in recent years Achdou et al. (2022), Ahn et al. (2018)
and Fernández-Villaverde et al. (2023). In this note we introduce bankruptcy (default) choice
to the standard consumption-savings problem, in the heterogeneous agent in continous time
(HACT) setting developped by Achdou et al. (2022). The contributions of this note are twofold.
First, we demonstrate that real-options-like problems such as the decision to file for bankruptcy
can be efficiently solved using the value-matching condition only (unlike alternative methods
that require both value matching and smooth pasting). Moreover, we show that under certain
conditions, smooth-pasting may not hold. This allows us to present a theoretical yet intuitive
understanding of boundary conditions in models with incomplete markets in continuous time.

Second, given that smooth pasting may not hold at the threshold between default and no-
default, we recommend computing real-option like problems such the decision to default with
linear complementary problem (LCP) solvers. This framework is both more flexible and also
reduces the computational cost relative to other methods implemented in HACT models that
feature bankruptcy choice. For example, Nuno and Thomas (2015) use a method that starts
by imposing smooth pasting and repeatedly varies the grid endpoints until value matching is
satisfied.1 Our proposed LCP approach is more flexible as the grid can remain fixed, can be
generalized to a larger state vector and can solve for bankruptcy choice without needing to
verify smooth pasting. The LCP approach also has benefits over the splitting method (SM),
used for example by Bornstein (2020). SM keeps grid points fixed, is straightforward and intuitive
to implement but is computationally demanding as it requires iterating the Hamilton-Jacobi-
Bellman (HJB) equation with a small updating parameter.2 The LCP approach is more common
in the finance literature - see Huang and Pang (1998) - but has been used less extensively in
economic settings (with the exception of Moll (2016), Kaplan et al. (2017), Shaker-Akhtekhane
(2017) and Mellior (2023)). Since alternative methods are currently in use, we provide novel
theoretical results on boundary conditions and numerical comparisons to show that the LCP
method, which is not reliant on verifying smooth pasting and is more flexible, has benefits in
terms of computational efficiency.

In Section 2 we introduce bankruptcy choice to an otherwise standard consumption-savings
problem. Section 3 shows cases where bankruptcy is optimal but where smooth pasting cannot
be satisfied and discusses the intuition behind boundary conditions in HACT models. Section 4
numerically compares the computational efficiency of alternative solution methods used in the
HACT literature.

2 The model

The model builds on Achdou et al. (2022) where agents maximize utility from consumption,
ct, discounted at rate ρ, subject to a flow budget constraint. Agents experience idiosyncratic
income shocks. Income z follows a two point jump process, where zH > zL and λL and λH are
the Poisson rates of jumps from low to high and high to low income, respectively. Agents can
save by accumulating wealth a (a negative value of a means an agent is in debt). There is an
exogenous debt limit, a, such that at ≥ a, where − zL

r
< a < 0 and r is the interest rate. In

contrast to Achdou et al. (2022), we assume agents can choose to file for bankruptcy. Filing

1This approach is not scalable when the state space has a dimension bigger than one. For instance, it cannot
handle settings where agents may default at different values of wealth as the income state changes.

2Hurtado et al. (2023) present another method that keeps grids fixed but assumes that opportunities to default
arrive randomly.
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for bankruptcy is immediately followed by discharge of all debts, the agent obtains the value of
default, V D, and loses the value of not being in default, V N . Formally, the agent’s problem is
given by

V N
i (at) = max

c,T
Et

[
∫ T

t

e−ρ(s−t)u(c)ds+ e−ρ(T−t)V D(aT )

]

, (1)

s.t.
dat
dt

= zit + rtat − ct, (2)

where u(c) = c1−σ

1−σ
and σ > 0. Without loss of generality, we parameterize the model such

that only the low income type ever files for bankruptcy. Furthermore, we assume a debt elastic
interest rate function given by.3

r(a) = r + γ0e
−γ1(a−γ2). (3)

The stationary Hamilton-Jacobi-Bellman (HJB) equation of the no-default value function is

ρV N
i = max

c
u(c) +

∂V N
i

∂a
Si + λi[V

N
j − V N

i ], i = L,H i ̸= j. (4)

For notational convenience we drop time subscripts and denote the drift as S instead of da
dt
. In

the no default region we have the first order condition in consumption (FOC) given by

u′(ci) =
∂V N

i

∂a
. (5)

The value function of no-default must satisfy the following constraint

V N
i (a) ≥ V D(a). (6)

Denote a∗ the default threshold. When a∗ > a, there is an interior solution and V N satisfies the
following optimality conditions:

V N
L (a∗) = V D(a∗), (7)

∂V N
L (a∗)

∂a
=
∂V D(a∗)

∂a
. (8)

These conditions are known as value matching (7) and smooth pasting (8).4 If the default
threshold is at a, smooth pasting may not be satisfied. We re-express the agent’s problem as a
variational inequality as follows

min

{

ρV N
i − u(c)−

∂V N
i

∂a
Si − λi[V

N
j − V N

i ], V N
i − V D

}

= 0. (9)

Equation (9) can be conveniently solved as a LCP. Note that this formulation does not impose
the smooth pasting condition; it is a byproduct (in cases were default takes place in the interior
of the state space) Moll (2016).

3The debt elastic interest rate is not strictly necessary. However, as it can generate more curvature in the
value function it simplifies obtaining corner or interior solutions by changing only one parameter.

4See Dixit and Pindyck (1994).
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3 Default as an interior vs corner solution

This section shows three distinct cases where default takes place, with particular consideration
of when smooth pasting is or is not satisfied. If bankruptcy is optimal, the default threshold is
either a∗ > a or a∗ = a. In both cases we have to compute how agents behave at a. Consider
the following parameterization of the default value function

V D =
u(zd + ψra)

ρ
, (10)

where zd and ψ capture income when in default and how much the debt position at the moment of
default affects V D, respectively. The latter can be thought of as the marginal penalty of entering
default with more debt. We use the following calibration throughout this note ρ = 0.05, σ = 2,
zL = 0.75, zH = 1.25, zd = 0.9 γ0 = 0.0075, γ1 = 2.7, γ2 = −3, r̄ = 0.035, λL = λH = 0.25 and
a = −4. We vary ψ, which can generate a corner solution when it is relatively small (Figures 1a
and 2) and interior solutions at larger values, as in Figure 1b.

(a) Corner solution & smooth pasting not satisfied (b) Interior solution & smooth pasting satisfied

Fig. 1: Default as an interior vs corner solution

In Figures 1a and 1b, VL depicts the value function of a low-income-type agent in an environ-
ment where bankruptcy is not possible. V N

L and V D depict the value function of the low income
type when bankruptcy is allowed and that of default, respectively. Figure 1a illustrates how a
constant value of default gives rise to a corner solution. A constant value function, generated
by setting ψ = 0, implies that the marginal penalty of more debt in the default regime is zero.
In such cases agents push the default threshold, a∗, to the boundary a. The smooth pasting
condition would erroneously imply infinite consumption at a, violating the agent’s consumption

smoothing motive. Hence, if ∂V D(a)
∂a

is relatively flat, optimizing agents would rather increase
consumption for all time periods from t0 until the moment of bankruptcy filing, instead of engag-
ing in an infinite consumption spike at a. As a result, the level of V N

L (a) shifts up for the entire
state space. Economic factors such as bankruptcy laws and risk premia will affect the curvature
of V D(a) and V N

L (a) and determine whether and where default takes place. For instance, as we
increase ψ, it becomes less attractive to default with larger amounts of debt. Figure 1b shows
that increasing ψ to 0.007 leads to an interior solution where both value matching and smooth
pasting are satisfied.
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Fig. 2: Corner solution - Smooth pasting is not satisfied even though the slope of the value of default is positive.

Figure 2 shows that we can also have corner solutions in cases where V D has a positive slope
(ψ = 0.001). In cases with corner solutions we will not be able to rely on smooth pasting. How-
ever, we can still use value matching, equation (7). To do so, define F (c(a)) as the discrepancy
in value matching at a as follows

F (c) = V N
L (a)− V D, (11)

where c = c(a). Plug in (4), the HJB equation for V N
L and the FOC (5) into F (c) to obtain the

next expression.

F (c) =
u(c) + u′(c)SL + λLV

N
H (a)

(ρ+ λL)
− V D (12)

Let c∗ represent the level of consumption at a that minimizes the residual of F (c). If default is
optimal then F (c∗) = 0 and value matching is satisfied. Otherwise, F (c) > 0 and we recover the
boundary condition of the standard consumption-savings problem without default. To stress the
link between both cases, consider the slope of (12) with respect to c in Figure (3), given by

∂F (c)

∂c
= u′′(c) (zL + ra− c) . (13)

Since u′′ < 0, then F (c) is U-shaped and reaches a minimum at c = zL + ra (i.e., at SL = 0).
Figure 3 shows that when the agent chooses bankruptcy the drift will be negative and c(a) >
zL + ra. Thus in models where agents are allowed to choose bankruptcy, generating a negative
drift at the lower boundary, or even in models where the debt limit can never be violated (non-
negative drift at a), we can solve for consumption at a by exploiting (11) and restricting solutions
to those where (13) is non-negative.5

5When the consumption policy implies a negative (positive) drift on wealth, the upwind scheme approximates
the derivative of V with a backward (forward) finite difference (see Achdou et al. 2022). In general we use
boundary conditions to determine consumption at the boundary. But with bankruptcy choice we do not know
in advance which boundary condition should be implemented at a nor can we compute the backward looking
derivative of V . The approach we propose lets the value matching condition select the correct boundary condition
whether bankruptcy is or is not allowed.
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Fig. 3: The value matching equation determines consumption at the boundary a, yielding the standard boundary
condition in Achdou et al. (2022) when bankruptcy is not optimal (left panel) and when bankruptcy is optimal
(right panel), implying a negative drift at the boundary.

Figure 3 shows that when bankruptcy is optimal, F (c∗) will have two roots. The smaller
root can be ignored since it yields a positive drift at the debt limit. A positive drift at a implies
we are moving away from the default boundary and runs into a contradiction with exercising
the option to default.6 Instead, we keep the root that yields a negative drift and is consistent
with exercising the option to default.7

Our method captures the correct boundary condition depending on whether F (c) crosses the
zero line, and if it does, selecting the root where (13) is positive. The insights from this section
are summarized in Table 1.8

Table 1

Boundary conditions.

Default Value matching Smooth pasting Drift at a
At a∗ > a (interior solution) yes yes <0
At a∗ = a (corner solution) yes no (V N ′

L (a) > V D′(a)) <0
No no (V N

L (a) > V D(a)) no ≥ 0

4 Comparing solution methods

Table 2 compares the computational cost of solving V N with the splitting method (SM), the
method devised by Hurtado et al. (2023) (HNT) and the LCP approach described above. We
compute the HJB equation absolute and relative residuals for all methods. The convergence
criteria is set to a maximum absolute change in the value function, per iteration, of 1e-6.9 Both
the SM and HNT methods are sensitive to the update step, ∆. The smaller the step is, the
closer we get to the true solution, but at the cost of additional iterations. This trade-off worsens
in cases where there is a corner solution, especially for the SM method.

6In Figure 3 we make explicit the dependence of the drift on c to highlight the connection between its sign
and bankruptcy choice.

7Wälde (2010) shows the HJB equation in a standard consumption-savings problem without default has two
roots in consumption, but one of them implies a non-concave value function. In our model we pick the root that
is consistent with bankruptcy choice.

8Appendix A shows how default at the boundary requires modifying the entries of the so called A matrix.
9Computations are done with a Toshiba Portege X30-E with Intel Core i7-8550U processor (1.8 GHz)

and 16 GB of RAM. We define a grid in wealth with 300 points. Replication codes are available at
https://github.com/GMellior/Bankruptcy in HACT.
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Table 2

Computational cost of V N .

Update parameter ∆ Time (seconds) Sup norm† Rel error‡ Iterations Boundary

Case A: Interior solution with a∗ = −3.52 and ψ = 0.007

LCP ∞ 1.39e− 1 1.59e− 9 7.55e− 11 13 -3.52
SM* 1.00e− 3 3.12e2 5.06e− 3 2.18e− 4 68839 -3.52
SM 5.00e− 2 5.95 2.47e− 1 1.06e− 2 1613 -3.49
SM 1.00e− 1 2.01 4.77e− 1 2.04e− 2 859 -3.44
HNT (γ = 46.25) 4.00e− 2 3.74 2.50e− 5 1.48e− 6 2671 -3.52
HNT (γ = 23.12) 8.00e− 2 2.02 1.25e− 5 7.39e− 7 1366 -3.49

Case B: Corner solution with a∗ = a = −4 and ψ = 0.001

LCP ∞ 3.03e− 1 6.90e− 10 3.33e− 11 15 -4.00
SM 5.00e− 5 1.53e3 5.70e− 2 2.56e− 3 446750 -4.00
SM 4.00e− 4 3.51e2 1.56e− 2 7.01e− 4 106449 -3.97
HNT (γ = 185.00) 5.00e− 3 1.55e1 2.00e− 4 1.19e− 5 11844 -3.97
HNT (γ = 92.50) 2.00e− 2 8.07 4.99e− 5 2.98e− 6 4591 -3.95

Case C: Corner solution with a∗ = a = −4 and ψ = 0

LCP ∞ 8.12e− 1 3.10e− 9 1.51e− 10 18 -4.00
SM 1.00e− 5 1.20e3 1.00e− 1 4.46e− 3 599281 -3.95
SM 2.00e− 4 1.19e3 7.66e− 3 3.45e− 4 183700 -3.57
HNT (γ = 185.00) 5.00e− 3 3.63e1 2.00e− 4 1.19e− 5 11818 -3.97
HNT (γ = 92.50) 2.00e− 2 4.36 4.99e− 5 2.98e− 6 4578 -3.95

† and ‡ are the max of the absolute value of the HJB equation residuals in absolute and relative terms, respectively.
The arrival rate of bankruptcy opportunities is denoted by γ. SM* has a stopping criteria of 1e-7.

The HNT method requires adjusting both the time step and rate of arrival of bankruptcy
opportunities γ. We want this rate to be as large as possible to approximate the bankruptcy
choice model, but doing so requires reducing ∆, thus increasing the number of iterations. The
LCP method is not sensitive to ∆, is more accurate, requires less iterations and is thus faster
than the other two alternatives.

5 Conclusion

If the value of default is high enough to satisfy value matching and has a positive slope, then
the default threshold a∗ may be in the interior of the state space or at the left boundary a.
Smooth pasting will be satisfied in the former but generally not in the latter. Regardless, we
still have to compute consumption at a. The approach outlined above takes care of finding
consumption at this point and is general enough to find the solution to models with debt limits,
whether bankruptcy is or is not allowed. Checking value matching and smooth pasting at a∗

is not necessary when default occurs in the interior; as it is a by-product of the variational
inequality, which can be handled by the LCP solver. We thus propose this approach, as it is
more general and computationally efficient relative to two other popular methods that have been
used in recent HACT models that feature bankruptcy choice.
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Appendix A

Allowing for default at a requires a modification to the finite difference scheme used for models
without default in Achdou et al. (2022). Without loss of generality, suppose that we have only
one income level and that we have I grid points in a. The HJB equation of the no default value
function is given by

ρV = u(c) +
∂V

∂a
[z + ra− c]. (14)

We can compactly write the HJB equation as

ρv = u(c) +Av.

We obtain a solution by iterating the value function with a semi-implicit update given by10

V
n+1 =

[

I

(

ρ+
1

∆

)

−A
n

]

−1 [

u(cn) +
V n

∆

]

. (15)

As in Achdou et al. (2022) and Hurtado et al. (2023) let the the outflows and inflows at gridpoint
i be represented as follows.11

xi = −min

{

z + rai − cBi
∆a

, 0

}

inflow from ai to ai−1

yi = min

{

z + rai − cBi
∆a

, 0

}

−max

{

z + rai − cFi
∆a

, 0

}

outflow from ai

zi = max

{

z + rai − cFi
∆a

, 0

}

inflow from ai to ai+1

The flows above are represented as

A =















y1 z1 0 · · · · · · · · · 0
x2 y2 z2 0 · · · · · · 0
0 x3 y3 z3 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · · · · · · · xI yI















.

In models without default we set the backward based drift at a as zero, which imposes a debt
limit at the lower boundary and forbids accumulating additional debt beyond a. In our setting
the agent will be allowed to optimize at this very last instant prior to exiting the no-default state.
Default at a makes the sum of the first row of the A matrix different from zero, so the inflows
and outflows at this grid point are no longer balanced. Additionally, default at a introduces a
new term in the RHS of the HJB equation, − V0

∆a
SB(a).

12 When we allow default at a we have
to modify the first entry of the A matrix and add a new term to (14) and thus (15). We update
the matrix, now represented as Am, by adding an x1 term to its first entry.

10Note that I is the identity matrix of size I × I.
11This follows from the upwind scheme. See the numerical appendix in Achdou et al. (2022).
12This term arises from the ghost node in the backward based derivative of V at the boundary.
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Am =















y1 + x1 z1 0 · · · · · · · · · 0
x2 y2 z2 0 · · · · · · 0
0 x3 y3 z3 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · · · · · · · xImax
yImax















(16)

We offset the x1 term that appears in Am by subtracting −x1V1 to the RHS of (14). Recall that
V1−V0

∆a
= u′(c).

ρv = u(c) +Amv + u′(c)[z + ra− c]✶i=1 (17)

The new term in (17) is equivalent to taking into account the utility flow stemming from bor-
rowing one last instant before becoming bankrupt at a. Adding x1 to y1 makes the first entry
of Am equal to zero. Therefore, we update (15) as shown next.

V
n+1 =

[

I

(

ρ+
1

∆

)

−A
n

m

]

−1 [

u(cn) +
V n

∆
+ u′(c)[z + ra− c]✶i=1

]

(18)

Remember that c is the value such F (c) = 0 (default) or, if there is no solution, the minimum
of F (c) (no default). In the latter case, the zero drift eliminates the extra term on the RHS and
we are back in the standard case of no default. Finally, note that the Am matrix is ill suited for
obtaining the wealth distribution if default does take place. Depending on where agents go to
in the state space after declaring default, we have to move the x1 term in the first row of Am

to the corresponding column that points to where new bankrupt agents go. This will guide the
flow of bankrupt agents at a to such points.13

13If default takes place in the interior of the state space we redirect the flows into bankruptcy in a similar way,
but in such cases, using the row of the A matrix that corresponds to the dfault threshold a∗.
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